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Numerical solutions of partial differential equations enable a broad range of scientific research. The Dedalus
Project is a flexible, open-source, parallelized computational framework for solving general partial differential
equations using spectral methods. Dedalus translates plain-text strings describing partial differential equations
into efficient solvers. This paper details the numerical method that enables this translation, describes the design
and implementation of the codebase, and illustrates its capabilities with a variety of example problems. The
numerical method is a first-order generalized tau formulation that discretizes equations into banded matrices.
This method is implemented with an object-oriented design. Classes for spectral bases and domains manage the
discretization and automatic parallel distribution of variables. Discretized fields and mathematical operators are
symbolically manipulated with a basic computer algebra system. Initial value, boundary value, and eigenvalue
problems are efficiently solved using high-performance linear algebra, transform, and parallel communication
libraries. Custom analysis outputs can also be specified in plain text and stored in self-describing portable
formats. The performance of the code is evaluated with a parallel scaling benchmark and a comparison to a
finite-volume code. The features and flexibility of the codebase are illustrated by solving several examples: the
nonlinear Schrödinger equation on a graph, a supersonic magnetohydrodynamic vortex, quasigeostrophic flow,
Stokes flow in a cylindrical annulus, normal modes of a radiative atmosphere, and diamagnetic levitation. The
Dedalus code and the example problems are available online at http://dedalus-project.org/.
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I. INTRODUCTION

Partial differential equations (PDEs) describe continuum
processes. The continuous independent variables typically
represent space and time, but can also represent more abstract
quantities such as momentum, energy, age of a population, or
currency. The ability to equate the infinitesimal rates of change
of different quantities produces endless possible applications.
Important examples include wave propagation, heat transfer,
fluid flow, quantum mechanical probability flux, chemical &
nuclear reactions, biological phenomena, and even financial
markets [1] or social/population dynamics [2, 3]. Even more
intriguing are possible combinations of several of the above
[4, 5].

Apart from a small handful of closed-form solutions, the
vast majority of PDEs require serious numerical and compu-
tational intervention. A wide variety of numerical algorithms
solve PDEs through the general approach of discretizing its
continuous variables and operators to produce a finite-sized
algebraic system yielding an approximate solution. Finite el-
ement, finite volume, and finite difference methods are com-
mon schemes that discretize the domain of the PDE into cells
or points and derive algebraic relations between the values
at neighboring cells or points from the governing equations.
These methods can accommodate complex geometries (such
as the flow around an aircraft), but can be difficult to imple-
ment for complex equations and typically converge relatively
slowly as additional cells or points are added.

In contrast, spectral methods discretize variables by expand-
ing them in a finite set of basis functions and derive equations
for the coefficients of these functions. These methods are well-
suited to many equation types and provide rapidly converging
solutions (e.g. exponential for smooth functions) as additional
modes are included. However, spectral methods are typically
limited to simple geometries (such as boxes, cylinders, and
spheres). Recent literature has developed sparse representa-
tions of equations that are substantially better conditioned and
faster than traditional dense collocation techniques [6–12].

These features make spectral methods an attractive choice for
scientists seeking to study a wide variety of physical processes
with high precision.
While computing capacities have grown exponentially over

the past few decades, the progression of software development
has been more gradual. Many software packages have chosen
one or a few closely related PDEs and focused on creating
highly optimized implementations of algorithms that are well-
suited to those choices. These solvers usually hardcode not
only the PDE but also the dynamical variables, choice of input
control parameters, integration scheme, and analysis output.
While many world-class simulation codes have been devel-
oped this way, often scientific questions lead beyond what a
dedicated code can do. This is not always because of a lack of
computational power or efficiency, but often because contin-
ued progress requires an alternativemodel, dynamical variable
reformulation, or more exotic forms of analysis.
Simulation packages with flexible model specification also

address an underserved scientific niche. It is often straight-
forward to write serial codes to solve simple one-dimensional
equations for particular scientific questions. It is also worth-
while to invest multiple person-years building codes that solve
well-known equations. However, it can be difficult to justify
spending significant time developing codes for novel models
that are initially studied by only a few researchers. We be-
lieve this leaves many interesting questions unaddressed sim-
ply from a local cost-benefit analysis. Flexible toolkits can
lower the barrier to entry for a large number of interesting
scientific applications.
The FEniCS1 and Firedrake2 packages both allow users to

symbolically enter their equations in variational form and
produce finite-element discretizations suitable for forward-
modeling and optimization calculations. These are very pow-
erful tools for solving wide ranges of PDEs in complicated

1 https://fenicsproject.org
2 https://www.firedrakeproject.org

https://fenicsproject.org
https://www.firedrakeproject.org
https://fenicsproject.org
https://www.firedrakeproject.org
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geometries, however they remain less efficient than spectral
methods for many PDEs in simple geometries. Channelflow3

uses sparse Chebyshev methods to simulate the Navier-Stokes
equations and allows users to find and analyze invariant solu-
tions using dynamical systems techniques. However, the code
is restricted to solving incompressible flow in a periodic chan-
nel geometry. The Chebfun4 and ApproxFun5 packages are
highly flexible toolkits for performing function approximation
using spectralmethods. They include awide variety of features
including sparse, well-conditioned, and adaptive methods for
efficiently solving differential equations to machine precision.
However, these packages are not optimized for the solution of
multidimensional PDEs on parallel architectures.

The goal of the Dedalus Project is to bridge this gap and
provide a framework applying modern, sparse spectral tech-
niques to highly parallelized simulations of custom PDEs. The
codebase allows users to discretize domains using the direct
products of spectral series and symbolically specify systems
of PDEs on those domains. The code then produces a sparse
discretization of the equations and automatically parallelizes
the solution of the resulting model. The Dedalus codebase is
open-source, highly modular, and easy to use. While its de-
velopment has been motivated by the study of turbulent flows
in astrophysics and geophysics, Dedalus is capable of solving
a much broader range of PDEs. To date, it has been used for
applications and publications in applied mathematics [13–17],
astrophysics [18–33], atmospheric science [34–39], biology
[40–42], condensed matter physics [43, 44], fluid dynamics
[45–56], glaciology [57], limnology [58], numerical analysis
[59–62], oceanography [63–67], planetary science [68, 69],
and plasma physics [70–77].

We begin this paper with a review of the fundamental theory
of spectral methods and a description of the specific numer-
ical method employed by Dedalus (§II). We then provide an
overview of the project and codebase using a simple example
problem (§III). Sections §IV–§X detail the implementations
of the fundamental modules of the codebase, with a particu-
lar emphasis on its systems for symbolic equation entry and
automatic distributed-memory parallelization. Although these
sections describe essential details of the code, a careful reading
is not necessary to begin using Dedalus. Finally, §XI demon-
strates the features and performance of the codebase with a
parallel scaling analysis, a comparison to a finite volume code,
and example simulations of nonlinear waves on graphs, com-
pressiblemagnetohydrodynamic flows, quasi-geostrophic flow
in the ocean, Stokes flow in cylindrical geometry, atmospheric
normal modes, and diamagnetic levitation.

3 http://channelflow.org
4 http://www.chebfun.org
5 https://github.com/JuliaApproximation/ApproxFun.jl

II. SPARSE SPECTRAL METHODS

A. Fundamentals of spectral methods

1. Spectral representations of functions

A spectral method discritizes functions by expanding them
over a set of basis functions. These methods find broad ap-
plication in numerical analysis and give highly accurate and
efficient algorithms for manipulating functions and solving
differential equations. The classic reference Boyd et al. [78]
covers the material in this section in great detail.
Consider a complete orthogonal basis {φn(x)} and the as-

sociated inner product (φn, φm)φ ∝ δn,m. The spectral repre-
sentation of a function f (x) comprises the coefficients { f φn }
appearing in the expansion of f (x) as

f (x) =
∞∑
n=0

f φn φn(x), (1)

with

f φn =
(φn, f )φ
(φn, φn)φ

≡ 〈φn | f 〉. (2)

We will use bra-ket notation to denote such normalized bra-
family inner products. Formally, an exact representation re-
quires an infinite number of nonzero coefficients. Numerical
spectral methods approximate functions (e.g. PDE solutions)
using expansions that are truncated after N modes. The trun-
cated coefficients f̃ φn are computed using quadrature rules of
the form

f̃ φn =
N−1∑
i=0

wi f (xi) (3)

where theweights,wi , and collocation points, xi , depend on the
underlying inner-product space. The quadrature scheme con-
stitutes a discrete spectral transform for translating between
the spectral coefficients and N samples of the function.
The error in the truncated approximation is often of the same

order as the last retained coefficient. The spectral coefficients
of smooth functions typically decay exponentially with n, re-
sulting in highly accurate representations. The spectral coef-
ficients of non-smooth functions typically decay algebraically
as n−α, where α depends on the order of differentiability of
f (x). Exact differentiation and integration on the underlying
basis functions provides accurate calculus for general func-
tions. For PDEs with highly differentiable solutions, spectral
methods therefore give significantly more accurate results than
fixed-order schemes.

2. Common spectral series

Trigonometric polynomials are the archetypal spectral
bases: sine series, cosine series, and complex exponential

http://channelflow.org
http://www.chebfun.org
https://github.com/JuliaApproximation/ApproxFun.jl
http://channelflow.org
http://www.chebfun.org
https://github.com/JuliaApproximation/ApproxFun.jl
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Figure 1. Chebyshev polynomials (a) can be viewed as cosine
functions (b) drawn on a cylinder and projected onto the bisecting
plane (c).

Fourier series. These bases provide exponentially converg-
ing approximations to smooth functions on periodic intervals.
The Fast Fourier Transform (FFT) can compute the series co-
efficients inO(N log N) time, enabling computations requiring
both the coefficients and grid values to be performed efficiently.

The classical orthogonal polynomials also frequently appear
as spectral bases. Most common are the Chebyshev polyno-
mials {Tn(x)}, which provide exponentially converging ap-
proximations to smooth functions on the interval [−1, 1]. A
simple change of variables relates the Chebyshev polynomials
to cosine functions,

Tn(x) = cos(n cos−1(x)). (4)

Geometrically, Tn(x) is the projection of cos(nx) from the
cylinder to the plane; see Fig. 1. The relation to cosines
enables transforming between Chebyshev coefficients and val-
ues on collocation points using the fast discrete cosine trans-
form (DCT). The fast transform often makes Chebyshev series
preferable to other polynomials on finite intervals.

3. Solving differential equations with spectral methods

Spectral methods solve PDEs by creating algebraic equa-
tions for the coefficients of the truncated solution. Different
approaches for constructing and solving these systems each
come with advantages and disadvantages. In examining a
few approaches, we consider a simple linear PDE of the form
Lu(x) = f (x), where L is a x-differential operator.
The collocation approach is perhaps themost common poly-

nomial spectral method. In this case, the differential equation
is enforced at the interior collocation points. The solution is
written in terms of the values at these points:

Lu(xi) = f (xi), i = 0, ..., N − 1. (5)

The boundary conditions typically replace the DE at the col-
location endpoints. The collocation method works well in a
broad range of applications. The primary advantages are that
many boundary conditions are easily enforced and the solu-
tion occurs on the grid. The primary disadvantages are that
themethod produces densematrices (L) andmore complicated
boundary conditions require more care to implement [79].
An alternative is the Galerkin method, where the solution

is written in terms of “trial” functions {φn} that satisfy the
boundary conditions. The differential equation is then pro-
jected against a set of “test” functions {ψn}:∑

n

〈ψi |Lφn〉uφn =
∑
n

〈ψi |φn〉 f φn , i = 0, ..., N − 1. (6)

For periodic boundary conditions, the Galerkin method us-
ing Fourier series produces diagonal derivative operators, al-
lowing constant-coefficient problems to be solved trivially.
Galerkin bases can be constructed from Chebyshev polyno-
mials for simple boundary conditions, with the caveat that
the series coefficients must be converted back to Chebyshev
coefficients to apply fast transforms.
The taumethod generalizes the Galerkin method by solving

the perturbed equation

Lu(x) + τP(x) = f (x), (7)

where P(x) is specified. The parameter τ adjusts to accommo-
date the boundary conditions, which are enforced simultane-
ously. The tau method provides a conceptually straightforward
way of applying general boundary conditions without needing
a specialized basis. The classical tau method [80, 81] uses
the same test and trial functions and assumes P(x) = φn−1(x),
making it equivalent to dropping the last row of the discrete
L matrix and replacing it with the boundary condition. This
classical formulation with Chebyshev series results in dense
matrices, but (as described below) the taumethod can bemodi-
fied to produce sparse and bandedmatrices formany equations.

B. A general sparse tau method

This section describes the spectral method employed in
Dedalus. We use a tau method with different trial and test
bases, which produces sparse matrices for general equations.
Formulating problems as first-order systems and using Dirich-
let preconditioning (basis recombination) renders matrices
fully banded.
The method is fundamentally one-dimensional, but gener-

alizes trivially to D-dimensions with all but one separable
dimension (e.g. Fourier-Galerkin). Multidimensional prob-
lems then reduce to an uncoupled set of 1D problems that are
solved individually.
Other approaches based on the ultraspherical method [9] or

integral formulations [7] similarly result in sparse and banded
matrices for many equations. Our particular approach is
designed to accommodate general systems of equations and
boundary conditions automatically.
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Ti| xTj(a) Ui| xTj(b)

Figure 2. Derivative matrices using (a) Chebyshev-T and (b)
Chebyshev-U polynomials as test functions. Using different fami-
lies of test and trial functions allows general differential operators to
be represented with sparse matrices.

1. Sparse differential operators

Traditional polynomial spectral formulations often result
in dense derivative matrices. In particular, the derivatives
of Chebyshev polynomials are dense when expanded back in
Chebyshev polynomials:

∂xTj(x) =
j−1∑
i=0

Ti(x)
2 j(( j − i)mod 2)

1 + δi,0
. (8)

Fig. 2 shows the matrix version of Eq. (8), referred to as the
“T-to-T” form. However, the derivatives of Chebyshev poly-
nomials (of the first kind) are proportional to the Chebyshev
polynomials of the second kind, Un(x):

∂xTn(x) = nUn−1(x). (9)

Defined trigonometrically,

Un(x) =
sin((n + 1) cos−1(x))

sin(cos−1(x))
. (10)

Using test functions ψn = Un and trial functions φn = Tn

produces a single-band derivative matrix, called the “T-to-U”
form (right side in Fig. 2). We convert non-differential terms
from T-to-U via the sparse conversion relation

2Tn(x) = Un(x) −Un−2(x).. (11)

Together, these relations render first-order differential equa-
tions sparse. Higher-order equations can be handled by utiliz-
ing ultraspherical polynomials for higher derivatives [9], but
our approach is to simply reduce all equations to first-order
systems. The sparse-τ method extends to other orthogonal
polynomial series. Appendix A 1 lists the full set of derivative
and conversion relations implemented in Dedalus.

2. Banded boundary conditions

Choosing the tau polynomial P(x) = UN−1(x) in a T-to-U
method allows dropping the last matrix row and finding u(x)

without finding τ. The system then consists of a banded inte-
rior matrix, bordered with a dense boundary-condition row.
Applying a right-preconditioner renders the boundary row
sparse and the system fully banded. For Dirichlet bound-
ary conditions, using the adjoint relation of Eq. (11) gives the
non-orthogonal polynomials,

Dn(x) =
{

Tn(x) n = 0, 1
Tn(x) − Tn−2(x) n ≥ 2,

(12)

where

Dn(±1) =
{
(±1)n n = 0, 1
0 n ≥ 2.

(13)

In this basis, Dirichlet boundary conditions only involve the
first two expansion coefficients. This technique is known as
“Dirichlet preconditioning” or “basis recombination”.
In summary, for first-order systems with Dirichlet bound-

ary conditions, choosing φn = Dn, ψn = Un, and P = UN−1
produces fully banded matrices. The resulting matrices are
efficiently sovled using sparse/banded algorithms. With a
first-order system, it is possible to reformulate any bound-
ary condition (e.g. Neumann or global integral conditions) in
terms of a Dirichlet condition on the first-order variables. This
formulation extends to other orthogonal polynomial bases.
Appendix A 2 lists the full set of Dirichlet recombinations
implemented in Dedalus.

3. Non-constant coefficients

Many physical problems require multiplication by spatially
non-constant coefficients (NCCs) that vary slowly compared
to the unknown solution. Olver et al. [9], in the context of
Chebyshev polynomials, observed that multiplication by such
NCCs corresponds to band-limited spectral operators.
Multiplication by a general NCC g(x) acts linearly on u(x)

via ∑
j

〈ψi |gφ j〉uφj =
∑
j

Gψφ
i, j uφj . (14)

Given an expansion of the NCC in some basis as g(x) =∑∞
n=0 g

ξ
n ξn(x), the NCC matrix is

Gψφ
i, j =

∞∑
n=0

g
ξ
n 〈ψi |ξnφ j〉. (15)

For all orthogonal polynomials, 〈ψi |ξnφ j〉 = 0 if |i− j | > n.
We truncateNCCexpansions by dropping all termswhere gξn is
smaller than some threshold amplitude. The overall bandwidth
of Gψφ is therefore N ′, the number of terms that are retained in
the expansion of the NCC. For smooth NCCs, N ′ � N and the
multiplication matrix has low bandwidth. Appendix A 3 lists
the full set of multiplication matrices implemented in Dedalus.
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4. Solving systems of equations

For coupled systems of equations with S variables,∑S
j=1 Li, ju j(x) = fi(x) for i = 1, ..., S. In block-operator form

L · X = F , (16)

where X is the state-vector of variables, u j , and L is a ma-
trix of the operators. We discretize the system by replacing
each Li, j with its sparse-tau matrix representation described
above. In block-banded form, using Kronecker products and
the placement matrix (E i, j)k,l = δi,kδk,l ,

Lsys =

S∑
i, j=1

E i, j ⊗ Li, j . (17)

The systemmatrix Lsys acts on the concatenation of the variable
coefficients and has bandwidth O(SN).

If the operator matrices are interleaved rather than block-
concatenated, the resulting system matrix will act on the inter-
leaved variable coefficients and takes the form

Lsys =

S∑
i, j=1

Li, j ⊗ E i, j . (18)

This matrix will have bandwidth O(S), making it practical to
simultaneously solve coupled systems of equations with large
N .

5. Summary & example

Dedalus uses a modified tau method that produces banded
and well-conditioned matrices. Carefully chosen test-trial ba-
sis pairs render derivatives sparse. The first-order formulation
makes all boundary conditions equivalent to Dirichlet condi-
tions, which become banded under basis recombination. Trun-
cated NCC expansions retain bandedness for smooth NCCs.
Finally, matrices and coefficients are interleaved to keep sys-
tems of equations banded.
Fig. 3 shows the matrices at various conceptual stages for

a Chebyshev discretization of Poisson’s equation in 1D with
Dirichlet and Neumann boundary conditions:

∂2u
∂x2 = f (x), u(−1) = 0, ∂xu(1) = 0. (19)

The combination of writing equations as first-order systems,
T-to-U derivative mapping, Dirichlet preconditioning, and
grouping modes before variables produces a banded pencil
matrix.

We also note that coupled systems easily allow constraint
equations (those without temporal derivatives) to be imposed
alongside evolution equations, avoiding variable reformula-
tions and/or splitting methods. For instance, the divergence
condition in incompressible hydrodynamics can be imposed
directly (determining the pressure). The momentum equation
can then be integrated without splitting or derived pressure
boundary conditions.

III. PROJECT OVERVIEW AND DESIGN

A. Codebase structure

Dedalus makes extensive use of object-oriented program-
ming to provide a simple interface for the parallel solution of
general systems of PDEs. The basic class structure reflects the
mathematical objects that are encountered when posing and
solving a PDE. As an illustrative example, we consider solv-
ing the Fisher-KPP equation, a reaction-diffusion equation that
first arose in ecology:

∂u
∂t
− D∇2u = R u(1 − u), (20)

with unknown variable u(x, t), diffusion coefficient D, and
reaction rate R [82, 83].
Properly posing the PDE first requires specifying its spatial

domain. This is done by creating a Basis object discretizing
each dimension over a specified interval and forming a Domain
object as the direct-product of these bases. Here we construct a
2D channel domain, periodic in x andwithNeumann boundary
conditions on the boundaries in y, as the direct product of a
Fourier basis and a Chebyshev basis:

import numpy as np
import dedalus.public as de

# Bases: names , modes , intervals , dealiasing
x_basis = de.Fourier('x', 128 ,

interval=(0, 2*np.pi), dealias=3/2)
y_basis = de.Chebyshev('y', 64,

interval=(0, 1), dealias=3/2)
# Domain: bases , datatype
domain = de.Domain([x_basis , y_basis], float)

Next, we define an initial value problem on this domain
consisting of the PDE in first-order form (for temporal and
Chebyshev derivatives) along with the boundary conditions.
This is done by creating an Problem object representing the
problem type (here an initial value problem, IVP). Problem pa-
rameters, string-substitutions (to simplify equation entry), and
plain-text equations and boundary conditions are then added
to the problem. Under the hood, Dedalus constructs Field
objects to represent the variables and Operator objects that
symbolically represent the mathematical expressions in the
PDE.

# Problem: domain and variables
prob = de.IVP(domain , variables=['u','uy'])
# Fixed parameters
prob.parameters['D'] = 0.1
prob.parameters['R'] = 1
# Parsing substitutions
prob.substitutions['Lu'] = "dx(dx(u)) + dy(uy)"
# First -order reduction
prob.add_equation("uy - dy(u) = 0")
# Fisher -KPP equation
prob.add_equation("dt(u) - D*Lu = R*u*(1-u)")
# Neumann boundary conditions
prob.add_bc("left(uy) = 0")
prob.add_bc("right(uy) = 0")
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(1)  T-to-T equation blocks (2)  T-to-U conversion, BCs (3)  Dirichlet recombination (4)  Reversed Kronecker

Figure 3. Conceptual stages in matrix construction for the Chebyshev discretization of Poisson’s equation with Dirichlet and Neumann boundary
conditions (matrix entries colored by sign). (1) Original (T-to-T) matrices with block columns corresponding to u and ux , and block rows
corresponding to the LHS of ∂xux = 0 and ∂xu − ux = f (x). The T-to-T differentiation matrices are dense upper triangular. (2) After T-to-U
conversion and the addition of boundary conditions via the tau method. The derivatives are sparse and the identity-block bandwidths increase
slightly. The boundary conditions involve all coefficients of u and ux . (3) After Dirichlet recombination. Boundary rows are sparse and the
equation-block bandwidths increase slightly. (4) After reversing the Kronecker product to group by modes rather than variables. This final
matrix is highly sparse and completely banded.

To finish posing the IVP, we need to specify a temporal
integration scheme, the temporal integration limits, and the
initial values of the variables. This is done through the Solver
object built by each Problem. The initial data of the state fields
can be easily accessed from the solver and set in grid ('g') or
coefficient ('c') space.
# Pick a timestepper
ts = de.timesteppers.RK222
# Build solver
solver = prob.build_solver(ts)
# Set integration limits
solver.stop_sim_time = 10
# Set initial conditions
u = solver.state['u']
u['g'] = np.random.rand(*u['g'].shape)

Finally, the problem is solved by iteratively applying the
temporal integration scheme to advance the solution in time. In
Dedalus, this main loop is directly written by the user, allowing
for arbitrary data interactions as the integration progresses.
Although not included in this example, Dedalus also provides
extensive analysis tools for evaluating and saving quantities
during the integration.
dt = 0.01
# Main loop chceking stopping criteria
while solver.ok:

# Step forward
solver.step(dt)
# Perform some analysis
print(np.mean(u['g']), np.std(u['g']))

While this simple example covers the core user-facing
classes, several other classes control the automatic MPI par-
allelization and efficient solution of the solvers. All together,
the fundamental class hierarchy consists of the following:

• Basis: A one-dimensional spectral basis.

• Domain: The direct product of multiple bases, forming
the spatial domain of dependence of a PDE.

• Distributor: Directs the parallel decomposition of a
domain and spectral transformations of distributed data
between different states.

• Layout: A distributed transformation state, e.g. grid-
space or coefficient-space.

• Field: A scalar-valued field over a given domain. The
fundamental data unit in Dedalus.

• Operator: Mathematical operations on sets of fields,
composed to form mathematical expressions.

• Handler: Captures the outputs of multiple operators to
store in memory or write to disk.

• Evaluator: Efficiently coordinates the simultaneous
evaluation of the tasks from multiple handlers.

• Problem: User-defined PDEs (initial, boundary, and
eigen-value problems).

• Timestepper: ODE integration schemes that are used
to advance initial value problems.

• Solver: Coordinates the actual solution of a problem
by evaluating the underlying operators and performing
time integration, linear solves, or eigenvalue solves.

The following sections detail the functionality and implemen-
tation of these classes.

B. Dependencies

Dedalus is provided as an open-source Python3 package.
We choose to develop the code in Python because it is an open-
source, high-level language with a vast ecosystem of libraries
for numerical analysis, system interaction, input/output, and
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data visualization. While numerical algorithms written di-
rectly in Python sometimes suffer from poor performance, it
is quite easy to wrap optimized C libraries into high-level
interfaces with Python. A typical high-resolution Dedalus
simulation will spend a majority of its time in optimized C
libraries.

The primary dependencies of Dedalus include:

• The Numpy, Scipy, and Cython packages for Python
[84, 85].

• The FFTW C-library for fast Fourier transforms [86].

• An implementation of theMPI communication interface
and its Python wrapper mpi4py [87].

• The HDF5 C-library for reading and writing HDF5 files
and its Python wrapper h5py [88, 89].

A wide range of standard-library Python packages are used to
build logging, configuration, and testing interfaces following
standard practices.

Additionally, and perhaps counter-intuitively, we have found
that creating algorithms to accommodate a broad range of
equations and domains has resulted in a compact and main-
tainable codebase. Currently, the Dedalus package consists
of roughly 10,000 lines of Python. By producing sufficiently
generalized algorithms, it is possible to compactly and robustly
provide a great deal of functionality.

C. Documentation

Dedalus has been publicly available under the open-source
GPL3 license since its creation, and is developed under dis-
tributed version control. The online documentation includes
a series of tutorials and example problems demonstrating the
code’s capabilities and walking new users through the basics
of constructing and running a simulation. Links to the source
code repository and the documentation are available through
the project website, http://dedalus-project.org/.

D. Community

The Dedalus collaboration uses open-source code devel-
opment and strongly supports open scientific practices. The
benefits of the philosophy include distributed contributions to
the codebase, a low barrier-to-entry (especially for students),
and detailed scientific reproducibility. We outline these ideas
in detail in Oishi et al. [90].

Code development occurs through a public system of pull
requests and reviews on the source code repository. Periodic
releases are issued to the Python Package Index (PyPI), and
a variety of full-stack installation channels are supported, in-
cluding single-machine and cluster install scripts and a conda-
based build procedure.

The core developers maintain mailing lists for the growing
Dedalus user and developer communities. The mailing list
is publicly archived and searchable, allowing new users to

find previous solutions to common problems with installation
and model development. The Dedalus user list currently has
over 150 members. A list of publications using the code is
maintained online6.

IV. SPECTRAL BASES

Dedalus currently represents multidimensional fields using
the direct product of one-dimensional spectral bases. This
direct product structure generally precludes domains includ-
ing coordinate singularities, such as full disks or spheres.
However, curvilinear domains without coordinate singulari-
ties, such as cylindrical annuli can still be represented using
this direct product structure (for an example, see XI F). Basis
implementations form the lowest level of the program’s class
hierarchy. The primary responsibilities of the basis classes are
to define their collocation points and to provide an interface
for transforming between the spectral coefficients of a function
and the values of the function on their collocation points.
An instance of a basis class represents a series of its re-

spective type truncated to a given number of modes Nc , and
remapped from native to problem coordinates with an affine
map. A basis object is instantiated with a name string defin-
ing the coordinate name, a base_grid_size integer setting
Nc , parameters fixing the affine coordinate map (a problem
coordinate interval for bases on finite intervals, or stretching
and offset parameters for bases on infinite intervals), and a
dealias factor. Each basis class is defined with respect to
a native coordinate interval, and contains a method for pro-
ducing a collocation grid of Ng points on this interval, called
a native grid of scale s = Ng/Nc . Conversions between the
native coordinates xn and problem coordinates xp are done
via an affine map of the form xp = axn + b, which is applied
to the native grid to produce the basis grid.
Each basis class defines methods for forward transforming

(moving from grid values to spectral coefficients) and back-
ward transforming (vice versa) data arrays along a single axis.
Using objects to represent bases allows the transform methods
to easily cache plans or matrices that are costly to construct.
The basis classes also present a unified interface for imple-
menting identical transforms using multiple libraries with dif-
ferent performance and build requirements. We now define the
basis functions, grids, and transform methods for the currently
implemented spectral bases.

A. Fourier basis

For periodic dimensions, we implement a Fourier basis
consisting of complex exponential modes on the native interval
[0, 2π]:

φFk (x) = exp(ik x) (21)

6 http://dedalus-project.org/citations/

http://dedalus-project.org/
http://dedalus-project.org/citations/
http://dedalus-project.org/citations/
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Fourier

Chebyshev

Legendre

Hermite

Laguerre

Compound Chebyshev

Figure 4. Example collocation grids for the implemented bases. The Fourier basis grid is evenly spaced on a periodic interval. The Chebyshev
and Legendre basis grids cluster near the ends of a finite interval. The Hermite basis grid spreads out over the real line. The Laguerre basis
grid spreads one way over the half line. The Compound basis concatenates other bases on adjascent segments; e.g. three Chebyshev segments.

and a native grid consisting of evenly-spaced points beginning
at the left side of the interval:

xi =
2πi
Ng

, i = 0, ..., Ng − 1. (22)

A function is represented as a symmetric sum over positive
and negative wavenumbers

f (x) =
km∑
−km

fkφFk (x) (23)

where km = floor((Nc − 1)/2) is the maximum resolved
wavenumber, excluding the Nyquist mode kN = Nc/2 when
Nc is even. When f is a real function, we store only the
complex coefficients corresponding to k ≥ 0; the k < 0 co-
efficients are determined by conjugate symmetry. We discard
the Nyquist mode since it is only marginally resolved: for
real functions, the Nyquist mode captures cos(kN x), but not
sin(kN x), which vanishes on the grid when Ng = Nc .

The expansion coefficients are given explicitly by

fk =
1

2π

∫ 2π

0
f (x)φF∗k (x)dx (24)

=
1

Ng

Ng−1∑
i=0

f (xi)φF∗k (xi) (25)

and are computed with the fast Fourier transform (FFT). We
implement FFTs from both the Scipy and FFTW libraries,
and rescale the results to match the above normalizations,
i.e. the coefficients directly represent mode amplitudes. The
coefficients are stored in the traditional FFT output format,
starting from k = 0 and increasing to km, then following with
−km and increasing to −1.

B. Sine/Cosine basis

For periodic dimensions possessing definite symmetry with
respect to the interval endpoints, we implement a SinCos basis

consisting of either sine waves or cosine waves on the native
interval [0, π]:

φck(x) = cos(k x), (26)

φsk(x) = sin(k x) (27)

and a native grid consisting of evenly-spaced interior points:

xi =
π(i + 1/2)

Ng
, i = 0, ..., Ng − 1. (28)

Functionswith even parity are representedwith cosine series
as

f (x) =
Nc−1∑
k=0

fkφck(x) (29)

while functionswith odd parity are representedwith sine series
as

g(x) =
Nc−1∑
k=1

gkφ
s
k(x). (30)

The Nyquist mode kN = Nc is dropped from the sine series,
since the corresponding cosine mode vanishes on the grid
when Ng = Nc .
The expansion coefficients are given explicitly by

fk =
2 − δk,0

π

∫ π

0
f (x)φck(x)dx (31)

=
2 − δk,0

Ng

Ng−1∑
i=0

f (xi)φck(xi), (32)

gk =
2
π

∫ π

0
g(x)φsk(x)dx (33)

=
2

Ng

Ng−1∑
i=0

g(xi)φsk(xi) (34)



10

and are computed using the fast discrete cosine transform
(DCT) and discrete sine transform (DST). The same grid is
used for both series, corresponding to type-II DCT/DSTs for
the forward transforms, and type-III DCT/DSTs for the back-
ward transforms. We implement transforms from both the
Scipy and FFTW libraries, and rescale the results to match the
above normalizations, i.e. the coefficients directly represent
mode amplitudes.

These transforms are defined to act on real arrays, but since
they preserve the data-type of their inputs, they can be ap-
plied simultaneously to the real and imaginary parts of a com-
plex array. The spectral coefficients for complex functions are
therefore also complex, with their real and imaginary parts
representing the coefficients of the real and imaginary parts of
the function.

C. Chebyshev basis

For finite non-periodic dimensions, we implement a
Chebyshev basis consisting of the Chebyshev-T polynomials
on the native interval [−1, 1]:

Tn(x) = cos(n cos−1(x)). (35)

The native Chebyshev grid uses the Gauss-Chebyshev quadra-
ture nodes (a.k.a. the roots or interior grid):

xi = − cos
(
π(i + 1/2)

Ng

)
, i = 0, ..., Ng − 1. (36)

Near the center of the interval, the grid approaches an even
distribution where ∆x ≈ π/Ng. Near the ends of the interval,
the grid clusters quadratically and allows very small structures
to be resolved (Fig. 4).

A function is represented as

f (x) =
Nc−1∑
n=0

fnTn(x). (37)

The expansion coefficients are given explicitly by

fn =
2 − δn,0

π

∫ 1

−1

f (x)Tn(x)√
1 − x2

dx (38)

=
2 − δn,0

Ng

Ng−1∑
i=0

f (xi)Tn(xi) (39)

and are computed using the fast discrete cosine transform
(DCT) via the change of variables x = cos(θ). The Chebyshev
basis uses the same Scipy and FFTWDCT functions as the co-
sine basis, wrapped to handle the sign difference in the change-
of-variables and preserve the ordering of the Chebyshev grid
points. It also behaves similarly for complex functions, pre-
serving the data type and producing complex coefficients for
complex functions.

Chebyshev rational functions can also be used to discretize
the half line and the entire real line [12]. These functions
are not implemented explicitly in Dedalus, but can be utilized
with the Chebyshev basis by manually including changes of
variables in the equations.

D. Legendre basis

For finite non-periodic dimensions, we also implement a
Legendre basis consisting of the Legendre polynomials Pn(x)
on the native interval [−1, 1]. The Legendre polynomials are
orthogonal on this interval as∫ 1

1
Pn(x)Pm(x)dx = δn,mN2

n, (40)

where N2
n = 2/(2n + 1).

The native grid points xi are the Gauss-Legendre quadrature
nodes, calculated using scipy.special.roots_legendre.
A function is represented as

f (x) =
Nc−1∑
n=0

fnPn(x). (41)

The expansion coefficients are given by

fn =
1

N2
n

∫ ∞

−∞
f (x)Pn(x)dx (42)

=
1

N2
n

Ng−1∑
i=0

wi f (xi)Pn(xi) (43)

where wi are the Gauss-Legendre quadrature weights, also
computed using scipy.special.roots_legendre. We syn-
thesize the basis functionswith the standard recursion relations
in extended precision, which prevents underflows or overflows
in problems with large numbers of modes. Quadrature-based
Matrix-Multiply Transforms (MMTs) convert between grid
values and coefficients.

E. Hermite basis

For problems on the whole real line (−∞,∞), we imple-
ment a Hermite basis consisting of the physicists’ Hermite
polynomials Hn(x) and the normalized Hermite functions

φHn (x) = e−x
2/2Hn(x)/Nn, (44)

where N2
n = π

1/22nn!. The Hermite polynomials are orthogo-
nal under the Gaussian weight as∫ ∞

−∞
Hn(x)Hm(x)e−x

2
dx = δn,mN2

n . (45)

The “enveloped”Hermite functions incorporate theweight and
normalizations so that∫ ∞

−∞
φHn (x)φHm (x)dx = δn,m. (46)

Since the Hermite functions exist over the entire real line,
the affine map from native to problem coordinates is fixed
by specifying center and stretch parameters, rather than
specifying a problem interval. The native grid points xi are
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the Gauss-Hermite quadrature nodes, calculated using scipy
.special.roots_hermite.

Polynomial functions are represented in the standard basis
as

f (x) =
Nc−1∑
n=0

fnHn(x), (47)

while functions that decay towards infinity are represented in
the enveloped basis as

g(x) =
Nc−1∑
n=0

gnφ
H
n (x). (48)

The expansion coefficients are

fn =
1

N2
n

∫ ∞

−∞
f (x)Hn(x)e−x

2
dx (49)

=
1

N2
n

Ng−1∑
i=0

wi f (xi)Hn(xi) (50)

gn =

∫ ∞

−∞
g(x)φHn (x)dx (51)

=

Ng−1∑
i=0

wiex
2
i g(xi)φHn (xi) (52)

wherewi are theGauss-Hermite quadrature weights, also com-
puted using scipy.special.roots_hermite. We synthesize
the basis functions with the standard recursion relations in ex-
tended precision, which prevents underflows or overflows in
problems with hundreds of modes. Quadrature-based Matrix-
Multiply Transforms (MMTs) convert between grid values and
coefficients.

F. Laguerre basis

For problems on the half real line (0,∞), we implement a
Laguerre basis consisting of the standard Laguerre polyno-
mials Ln(x) and the normalized Laguerre functions

φLn (x) = e−x/2Ln(x). (53)

The Laguerre polynomials are orthonormal under the expo-
nential weight:∫ ∞

0
Ln(x)Lm(x)e−xdx = δn,m. (54)

The enveloped functions incorporate the weight so that∫ ∞

0
φLn (x)φLm(x)dx = δn,m. (55)

Since the Laguerre functions exist over the positive half line,
the affine map from native to problem coordinates is fixed by

specifying edge and stretch parameters, rather than speci-
fying a problem interval. A negative value of the stretch
parameters can be used to create a basis spanning the neg-
ative half line. The native grid points xi are the Gauss-
Laguerre quadrature nodes, calculated using scipy.special
.roots_laguerre.
Polynomial functions are represented in the standard basis

as

f (x) =
Nc−1∑
n=0

fnLn(x) (56)

while functions that decay towards infinity are represented in
the enveloped basis as

g(x) =
Nc−1∑
n=0

gnφ
L
n (x). (57)

The expansion coefficients are

fn =
∫ ∞

0
f (x)Ln(x)e−xdx (58)

=

Ng−1∑
i=0

wi f (xi)Ln(xi) (59)

gn =

∫ ∞

0
g(x)φLn (x)dx (60)

=

Ng−1∑
i=0

wiexig(xi)φLn (xi) (61)

where wi are the Gauss-Laguerre quadrature weights, also
computed using scipy.special.roots_laguerre. We syn-
thesize the basis functions with the standard recursion re-
lations in extended precision, which prevents underflows or
overflows in problems with hundreds of modes. Quadrature-
based Matrix-Multiply Transforms (MMTs) convert between
grid values and coefficients.

G. Compound bases

An arbitrary number of adjacent polynomial segments can
be connected to form a Compound basis. The spectral coeffi-
cients on each subinterval are concatenated to form the com-
pound coefficient vector, and the standard transforms operate
on each subinterval. The compound basis grid is similarly the
concatenation of the subinterval grids. There are no overlap-
ping gridpoints at the interfaces since the polynomial bases use
interior grids. Continuity is not required a priori at the inter-
faces, but is imposed on the solutions when solving equations
(see IXA).
The subintervals making up a compound basis may have

different resolutions and different lengths, but must be adja-
cent. Compound bases are useful for placing higher resolution
(from clustering near the endpoints of polynomial grids) at
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fixed interior locations. Compound expansions can also sub-
stantially reduce the number of modes needed to resolve a
function that is not smooth if the positions where the function
becomes non-differentiable are known. Fig. 4 shows the grid
of a compound basis composed of three Chebyshev segments.

H. Scaled transforms & dealiasing

Each basis implements transforms between Nc coefficients
and scaled grids of size Ng = sNc , where s is the transform
scale. When s < 1, the coefficients are truncated after the first
Ng modes before transforming. Such transforms are useful for
viewing compressed (i.e. filtered) versions of a field in grid
space. When s > 1, the coefficients are padded with Ng − Nc

zeros above the highest modes before transforming. Padding
is useful for spectral interpolation, i.e. to view low resolution
data on a fine grid.

Transforms with s > 1 are necessary to avoid aliasing errors
when calculating nonlinear terms, such as products of fields,
in grid space. For each basis, the dealias scale is set at in-
stantiation and defines the transform scale that is used when
evaluatingmathematical operations on fields. The well-known
“3/2 rule” states that properly dealiasing quadratic nonlineari-
ties calculated on the grid requires a transform scale of s ≥ 3/2.
In general, an orthogonal polynomial of degree Ng+nwill alias
down to degree Ng − n when evaluated on the collocation grid
of size Ng. A nonlinearity of order P involving expansions
up to degree Nc − 1 will have power up to degree P(Nc − 1).
For this maximum degree to not alias down into degree Nc −1
of the product, we must have 2Ng > (P + 1)(Nc − 1). Pick-
ing a dealias scale of s = (P + 1)/2 is therefore sufficient to
evaluate the nonlinearity without aliasing errors in the first Nc

coefficients. Non-polynomial nonlinearities, such as negative
powers of fields, cannot be fully dealiased using this method,
but the aliasing error can be reduced by increasing s.

I. Transform plans

To minimize code duplication and maximize extensibil-
ity, our algorithms require that each transform routine can
be applied along an arbitrary axis of a multidimensional ar-
ray. Scipy transforms include this functionality, and we built
Cython wrappers around the FFTW Guru interface to achieve
the same. The wrappers produce plans for FFTs along one
dimension of an arbitrary dimensional array by collapsing the
axes before and after the transform axis, and creating an FFTW
plan for a two-dimensional loop of rank-1 transforms. For ex-
ample, to transform along the third axis of a five-dimensional
array of shape (N1, N2, N3, N4, N5), the array would be viewed
as a three-dimensional array of shape (N1N2, N3, N4N5) and
a loop of N1N2 × N4N5 transforms of size N3 would occur.
This approach allows for the unified planning and evaluation of
transforms along any dimension of an array of arbitrary dimen-
sion, reducing the risk of coding errors that might accompany
treating different dimensions of data as separate cases.

The plans produced by FFTWare cached by the correspond-
ing basis objects and executed using the FFTW new-array in-
terface. This centralized caching of transform plans reduces
both precomputation time and the memory footprint necessary
to plan FFTW transforms for many data fields. The FFTW
planning rigor, which determines how much precomputation
should be performed to find the optimal transform algorithm,
is also wrapped through the Dedalus configuration interface.

V. DOMAINS

Domain objects represent physical domains, discretized by
the direct product of one-dimensional spectral bases. A
Dedalus simulation will typically contain a single domain
object, which functions as the overall context for fields and
problems in that simulation. A domain is instantiated with a
list of basis objects forming this direct product, the data type
of the variables on the domain (double precision real (64-bit)
or complex (128-bit) floating point numbers), and the process
mesh for distributing the domain when running Dedalus in
parallel.

A. Parallel data distribution

Computations in Dedalus are parallelized by subdividing
and distributing the data of each field over the available pro-
cesses in a distributed-memory MPI environment. The do-
main class internally constructs a Distributor object that
directs the decomposition and communication necessary to
transform the distributed fields between grid space and coef-
ficient space. Specifically, a domain can be distributed over
any lower-dimensional array of processes, referred to as the
process mesh. The process mesh must be of lower dimension
than the domain so that at least one dimension is local at all
times. Spectral transforms are performed along local dimen-
sions and parallel data transpositions change the data locality
to enable transforms across all dimensions.
To coordinate this process, the distributor constructs a se-

ries of Layout objects describing the necessary transform and
distribution states of the data between coefficient space and
grid space. Consider a domain of dimension D and shape
(N1, N2, ..., ND) distributed over a process mesh of dimension
P < D and shape (M1, M2, ..., MP):

• The first layout is full coefficient space, where the first
P array dimensions are block-distributed over the cor-
responding mesh axes, and the last D − P dimensions
are local. That is, the i-th dimension is split in adjacent
blocks of size Bi,i = ceil (Ni/Mi), and the process with
index (m1,m2, ...,mP) in the mesh will contain the data
block from miBi,i : (mi + 1)Bi,i in the i-th dimension.

• The subsequent D − P layouts sequentially transform
each dimension to grid space starting from the last di-
mension and moving backwards.
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• After D − P transforms, the first P dimensions are dis-
tributed and in coefficient space, and the last D − P
dimensions are local and in grid space. A global data
transposition makes the P-th dimension local in the next
layout. This transposition occurs along the P-th mesh
axis, gathering the distributed data along the P-th array
dimension and redistributing it along the (P+1)-th array
dimension. This is an all-to-all communication within
each one-dimensional subset of processes in the mesh
defined by fixed (m1, ...,mP−1).

• The next layout results from transforming the P-th di-
mension (now local) to grid space.

• The transposition step then repeats to reach the next
layout: all-to-all communication transposes the (P − 1)
and P-th array dimensions over the (P−1)-th mesh axis.

• The next layout results from transforming the (P − 1)-th
dimension (now local) to grid space.

• This process repeats, reaching new layouts by alternately
gathering and transforming sequentially lower dimen-
sions until the first dimension becomes local and is
transformed to grid space.

The final layout is full grid space. The first dimension is
local, the next P dimensions are distributed in blocks of size
Bn,n−1 = ceil (Nn/Mn−1), and the final D − P − 1 dimensions
are local. Moving from full coefficient space to full grid space
thus requires D local spectral transforms and P distributed
array transpositions. This sequence defines a total of D+P+1
data layouts.

Fig. 5 shows the data distribution in each layout for 3D data
distributed over a process mesh of shape (4, 2). The layout
system provides a simple, well-ordered sequence of transfor-
m/distribution states that can be systematically constructed for
domains and process meshes of any dimension and shape.
Conceptually, the system propagates the first local dimension
down in order for each spectral transform to be performed lo-
cally. Care must be taken to consider edge cases resulting in
empty processes for certain domain and process shapes. In
particular, if (Mi − k)Bi,i > Ni or (Mi − k)Bi+1,i > Ni+1 for
any mesh axis i, then the last k hyperplanes along the i-th
axis of the mesh will be empty. For instance, if M1 = 4 and
N1 = 9, then the initial block size along the lowest dimension
will be B1,1 = 3, and therefore processes with m1 = 4 will
be empty. These cases are typically avoidable by choosing a
different process mesh shape for a fixed number of processes.

For simplicity, we discussed fixed-shape global data
throughout the transform process. The implementation also
handles arbitrary transform scales along each dimension,
meaning Ni = Nc,i in coefficient space, and Ni = Ng,i = siNc,i

in grid space. The default process mesh is one-dimensional
and contains all available MPI processes.

B. Transpose routines

Consider the first transposition when moving from co-
efficient space to grid space, i.e. transposing the P and

(P + 1)-th array dimensions over the P-th mesh axis. This
transposition does not change the data distribution over the
lower mesh axes; it consists of separate all-to-all calls within
each one-dimensional subset of processes defined by fixed
(m1, ...,mP−1).
The transposition is planned by first creating separate sub-

groupMPI communicators consisting of each group of Mp pro-
cesses with the same (m1, ...,mP−1). Each communicator plans
for the transposition of an arraywith the global subgroup shape
(B1,1, ..., BP−1,P−1, NP, NP+1, ..., ND), i.e. the subspace of the
global data spanned by its subgroup processes. This array is
viewed as a four-dimensional array with the reduced global
subgroup shape (B1,1 × ... × BP−1,P−1, NP, NP+1, NP+2 × ... ×
ND), constructed by collapsing the pre- and post-transposition
dimensions. In this way, the general case of transposing a
D-dimensional array distributed over a P-dimensional process
mesh along an arbitrary mesh axis is reduced to the problem
of transposing a four-dimensional array across its middle two
dimensions.
When transposing the distribution along the p-th mesh axis

between the p-th and (p + 1)-th array dimensions, the global
subgroup shape is given by (n1, ..., nd) where

ni =


Bi,i i < p
Ni i = p, p + 1
Bi,i−1 p + 1 < i ≤ P + 1
Ni i > P + 1

(62)

where the first p array dimensions are distributed over the
corresponding mesh axes, the p-th and (p+ 1)-th array dimen-
sions are alternating between being local and distributed over
the p-th mesh axis, the following P − p array dimensions have
already undergone a transposition and are distributed over the
corresponding mesh axes less one, and the remaining array
dimensions are local. This global shape is collapsed to the
reduced global subgroup shape (G1,G2,G3,G4) where

G1 =

p−1∏
i=1

ni, G2 = np, G3 = np+1, G4 =

D∏
i=p+2

ni .

(63)
Routines using either MPI or FFTW are available for

performing the reduced data transpositions. The MPI
version begins with the local subgroup data of shape
(G1, Bp,p, Np+1,G4) and splits this data into the blocks of shape
(G1, Bp,p, Bp+1,p,G4) to be distributed to the other processes.
These blocks are then sequentially copied into a new memory
buffer so that the data for each process is contiguous. A MPI
all-to-all call is then used to redistribute the blocks from being
row-local to column-local, in reference to the second and third
axes of the reduced array. Finally, the blocks are extracted
from the MPI buffer to form the local subgroup data of shape
(G1, Np, Bp+1,p,G4) in the subsequent layout. The FFTW ver-
sion performs a hard (memory-reordering) local transposition
to rearrange the data into shape (G2,G3,G1,G4), and uses
FFTW’s advanced distributed-transpose interface to build a
plan for transposing a matrix of shape (G2,G3) with an item-
size of G1 × G4 ×Q, where Q is the actual data itemsize.
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Figure 5. The parallel data distribution for 3D data over a process mesh of shape (4, 2). The global data is depicted as being split into the
portions that are local to each process. The dimensions are labeled e.g. kx when the corresponding dimension is in coefficient space, and e.g.
x in grid space. The transforms (TF) and transpositions (TP) stepping between layouts are indicated.
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Figure 6. The effective data redistribution that occurs during the
distributed transposition between layouts 1 and 2 of the example
shown in Fig. 5. This transposition is switching the second mesh axis
with M2 = 2 from distributing ky to distributing z.

Fig. 6 shows the conceptual domain redistribution strategy
for the transposition between layouts 1 and 2 of the example
shown in Fig. 5. Both the MPI and FFTW implementations
require reordering the local data in memory before commu-
nicating. However, they provide simple and robust imple-
mentations encompassing the general transpositions required
by the layout structure. The MPI implementation serves as a
low-dependency baseline, while the FFTW routines leverage
FFTW’s internal transpose optimization to improve perfor-
mance when an MPI-linked FFTW build is available. The
FFTW planning rigor and in-place directives for the transposi-
tions are wrapped through the Dedalus configuration interface.

These routines can also be used to group transpositions of
multiple arrays simultaneously. Transposing S-many arrays
concatenates their local subgroup data and the reduced global
subgroup shape is expanded to (S ×G1,G2,G3,G4). A plan is
constructed and executed for the expanded shape. This con-
catenation allows for the simultaneous transposition of multi-
ple arrays while reducing the latency associated with initiating
the transpositions. The option to groupmultiple transpositions
in this manner is controlled through the Dedalus configuration
interface.

C. Distributed data interaction

For arbitrary transform scalings in each dimension, the lay-
out objects contain methods providing: the global data shape,
local data shape, block sizes, local data coordinates, and lo-
cal data slices for Field objects. These methods provide the
user with the tools necessary to understand the data distribu-
tion at any stage in the transformation process. This is useful
for both analyzing distributed data and initializing distributed
fields using stored global data.
The domain class contains methods for retrieving each pro-

cess’s local portion of the N-dimensional coordinate grid and
spectral coefficients. These local arrays are useful for ini-
tializing field values in either grid space or coefficient space.
Code that initializes field data using these local arrays is ro-
bust to changing parallelization scenarios, allowing scripts to
be tested serially on local machines and then executed on large
systems without modification.

VI. FIELDS

Field objects represent scalar-valued fields defined over
a domain. Each field object contains a metadata dictionary
specifying whether that field is constant along any axis, the
scales along each axis, and any other metadata associated with
specific bases (such as 'parity' for the sine/cosine bases
or 'envelope' for Hermite and Laguerre bases). When the
transform scales are specified or changed, the field object in-
ternally allocates a buffer large enough to hold the local data
in any layout for the given scales. Each field also contains a
reference to its current layout, and a data attribute viewing its
memory buffer using the local data shape and type.

A. Data manipulation

The Field class defines a number of methods for trans-
forming individual fields between layouts. The most basic
methods move the field towards grid or coefficient space by
calling the transforms or transpositions to increment or decre-
ment the layout by a single step. Other methods direct the
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transformation to a specific layout by taking sequential steps.
These methods allow users to interact with the distributed grid
data and the distributed coefficient data without needing to
know the details of the distributing transform mechanism and
intermediate layouts.

The __getitem__ and __setitem__ methods of the field
class allow retrieving or setting the local field data in any
layout. Shortcuts 'c' and 'g' allow fast access to the full
coefficient and grid data, respectively. To complete a fully
parallelized distributed transform:
f = Field(domain=domain)
f['g'] = ... # Set local grid data
f['c'] # Returns local coefficients

The set_scales method modifies the transform scales:
f.set_scales(10) # Set transform scales
f['g'] # Returns 10x spectral interpolant

B. Field Systems

The FieldSystem class groups together a set of fields. The
class provides an interface for accessing the coefficients cor-
responding to the same transverse mode, or pencil, of a group
of fields. A transverse mode is a specific product of basis
functions for the first D − 1 dimensions of a domain, indexed
by a multi-index of size D − 1. Each transverse mode has a
corresponding 1D pencil of coefficients along the last axis of
a field’s coefficient data. The linear portion of a PDE that
is uncoupled across tranverse dimensions splits into separate
matrix systems for each transverse mode.

A FieldSystem of S fields will build an internal buffer of
size

(B1,1, ..., BP,P, NP+1, ..., ND−1, ND × S). (64)

That is, the local coefficient shape with the last axis size mul-
tiplied by the number of fields. The system methods gather
and scatter copy the separate field coefficients into and out
of this buffer. Each size-ND × S system pencil contains the
corresponding field pencils, grouped along the last axis, in a
contiguous block of memory for efficient access.

A CoeffSystem allocates and controls just the unified buffer
rather than also instantiating field objects. Coefficient systems
are used as temporary arrays for all pencils, avoiding the mem-
ory overhead associated with instantiating new field objects.

VII. OPERATORS

The Operator classes represent mathematical operations
on fields, such as arithmetic, differentiation, integration, and
interpolation. An operator instance represents a specific math-
ematical operation on a field or set of fields. Operators can be
composed to build complex expressions. The operator system
serves two simultaneous purposes:

1. It allows the deferred and repeated evaluation of arbi-
trary operations.

2
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Figure 7. An operator tree representing the expression
2 * (10+f) + f * dx(f).

2. It can produce matrix forms of linear operations.

Together, these features allow the implicit and explicit eval-
uation of arbitrary expressions, which is the foundation of
Dedalus’ ability to solve general PDEs.

A. Operator classes and evaluation

Operators accept operands (fields or operators) from the
same domain, as well as other arguments such as numerical
constants or strings. Each operator class implements methods
determining the metadata of the output based on the inputs;
e.g. the output parity of a SinCos basis. Operator classes also
have a check_conditionsmethod that checks if the operation
can be executed in a given layout. For example, spectral
differentiation along some dimensions requires that dimension
to be in coefficient space as well as local for derivatives that
couple modes. Finally, operators have an operate method
which performs the operation on the local data of the inputs
once they have been placed in a suitable layout.
Operators can be combined to build complex expressions.

An arbitrary expression belongs to the root operator class,
with operands that belong to other operator classes, eventually
with fields or input parameters forming the leaves at the end
of the expression tree (see Fig. 7). The evaluate method
computes compound operators by recursively evaluating all
operands, setting the operands’ transform scales to the dealias
scales, transforming the operands to the proper layout, and
calling the operate method. Arbitrary expression trees are
evaluated in a depth-first traversal. The evaluatemethod can
optionally cache its output if it may be called multiple times
before the values of the leaves change. The attempt method
tries to evaluate a field, but will not make any layout changes
while evaluating subtrees. It therefore evaluates an expression
as much as possible given the current layouts of the involved
fields. Finally, operators also implement a number of methods
allowing for algebraic manipulation of expressions, described
in §VII F.
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B. Arithmetic operators

The Add, Multiply, and Power classes implement addi-
tion, multiplication, and exponentiation respectively. Differ-
ent subclasses of these operators are invoked depending on
the types of input. A Python metaclass implements this mul-
tiple dispatch system, which examines the arguments before
instantiating an operator of the proper subclass. For example,
the AddFieldField subclass adds two fields by adding the
local data of each field. The operation can be evaluated as
long as both fields are in the same layout. Addition between
fields requires compatible metadata, e.g. the same parity or
envelope settings. The AddScalarField class likewise adds
a constant to a field. Multiplication and exponentiation of
fields must occur in grid space, but otherwise have similar
implementations.

The overloaded __add__, __mul__, and __pow__ methods
allow for easy arithmetic on fields and operators using Python
infix operators. For example, with a Dedalus field, f, the
expression f + 5 will produce an AddScalarField instance.
We also override the __neg__, __sub__, and __truediv__
methods for negation, subtraction, and division:

-f # Becomes Multiply(-1, f)
f - g # Becomes Add(f, Multiply(-1, g))
f / g # Becomes Multiply(f, Power(g, -1))

C. Unary grid operators

The UnaryGridFunction class implements common non-
linear unary functions: np.absolute, np.sign, np.conj, np
.exp, np.exp2, np.log, np.log2, np.log10, np.sqrt, np.
square, np.sin, np.cos, np.tan, np.arcsin, np.arccos,
np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh, np.
arccosh, and np.arctanh. The operation proceeds by apply-
ing the function to the local grid space data of the operand. The
overloaded __getattr__ method intercepts Numpy universal
function calls on fields and operators and instantiates the cor-
responding UnaryGridFunction. This allows the direct use
of Numpy ufuncs to create operators on fields. For example np
.sin(f) on a Dedalus field fwill return UnaryGridFunction
(np.sin, f).

D. Linear spectral operators

Linear operators acting on spectral coefficients are derived
from the LinearOperator base class and the Coupled or
Separable base classes if they do or do not couple different
spectral modes, respectively. These operators are instantiated
by specifying the axis along which the operator is to be ap-
plied, which is used to dispatch the instantiation to a subclass
implementing the operator for the corresponding basis. These
operators implement a matrix_form method which produces
the matrix defining the action of the operator on the spectral
basis functions. For a basis φn and an operator A, the matrix

form of A is

Ai j = 〈φi |Aφ j〉. (65)

For separable operators, this matrix is diagonal by definition,
and represented with a one-dimensional array. For coupled
operators, this matrix is returned as a Scipy sparse matrix.
In general, linear operators require their corresponding axis

to be in coefficient space to be evaluated. Coupled opera-
tors further require that the corresponding axis is local. The
local data of the operand is contracted with the matrix form
of the operator along this axis to produce the local output
data. Operators may override this process by implementing an
explicit_formmethod if a more efficient or stable algorithm
exists for forward-applying the operator. For example, forward
Chebyshev differentiation uses a recursion rather than a matrix
multiplication.

1. Differentiation

Differentiate classes are implemented for each basis.
Differentiation of the Fourier and SinCos bases is a separa-
ble operator and therefore a diagonal matrix. Differentiation
of the polynomial bases is a coupled operator. Differentiation
of the Hermite polynomials and enveloped functions are both
naturally banded and therefore require no conversion into a
different test basis to retain sparsity. Differentiation of the
Chebyshev, Legendre, and Laguerre bases have dense upper
triangular matrices, but these are never used when solving
equations. Instead, we always convert the differential equa-
tions into a test basis with banded differentiation matrices (see
§II B 1). These conversions are applied as left-preconditioners
for the equation matrices. Appendix A 1 shows the full differ-
entiation and conversion matrices. For the Chebyshev, Leg-
endre, and Laguerre bases, forward differentiation uses O(Nc)
recurrence relations rather than dense matrices. Template ma-
trices are rescaled according to the affine map between the
native and problem coordinates. The differentiation matrix for
the compound basis is the block-diagonal combination of the
subbasis differentiation matrices.
For each basis type, a differentiation subclass is referenced

from the basis-class Differentiate method. These meth-
ods are aliased as e.g. dx for a basis with name 'x' dur-
ing equation parsing. Additionally, a factory function called
differentiate (aliased as d) provides an easy interface for
constructing higher-order and mixed derivatives using the ba-
sis names, by composing the appropriate differentiation meth-
ods:

dx(f) # Becomes xbasis.Differentiate(f)
d(f, x=2, y=2) # Becomes dx(dx(dy(dy(f))))

The differentiation subclasses also examine the 'constant'
metadata of their operand, and return 0 instead of instantiating
an operator if the operand is constant along the direction of
differentiation.
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2. Integration

Integration is a functional that returns a constant for any
input basis series. Integration operators therefore set the '
constant'metadata of their corresponding axes to True. The
operator matrices are nonzero only in the first row (called the
operator vector).

The native integration vectors for each basis are rescaled by
the stretching of the affinemap between the native and problem
coordinates. Integration for the compound basis concatenates
each of the sub-basis integration vectors and places the result in
the rows corresponding to the constant terms in each sub-basis.

For each basis type, an integration subclass is referenced
from the basis-class Integrate method. Additionally, a fac-
tory function called integrate (aliased as integ) provides
an easy interface for integrating along multiple axes, listed by
name, by composing the appropriate integration methods:

integ(f, 'x', 'y')
# xbasis.Integrate(ybasis.Integrate(f))

If no bases are listed, the field will be integrated over all of its
bases. If the operand’s metadata indicates that it is constant
along the integration axis, the product of the constant and the
interval length will be returned.

The antidifferentiatemethod of the Field class imple-
ments indefinite integration. Thismethod internally constructs
and solves a simple linear boundary value problem and returns
a new Field satisfying a user-specified boundary condition,
fixing the constant of integration.

3. Interpolation

Interpolation operators are instantiated with an operand and
the interpolation position in problem coordinates. The oper-
ator matrices are again nonzero except in the first row (called
the operator vector) and depend on the interpolation position.
The specified interpolation positions are converted to the na-
tive basis coordinates via the basis affine map. The strings
'left', 'center', and 'right' are also acceptable inputs
indicating the left endpoint, center point, and right endpoint
of the problem interval. Specifying positions in this man-
ner avoids potential floating-point errors when evaluating the
affine map at the endpoints.

The interpolation classes construct interpolation vectors
consisting of the pointwise evaluation of the respective ba-
sis functions. Interpolation for the compound basis takes the
interpolation vector of the sub-basis containing the interpola-
tion position and places the result in the rows corresponding
to the constant terms in each sub-basis. If the interpolation
position is at the interface between two sub-basis, the first
sub-basis is used to break the degeneracy.

For each basis type, an interpolation subclass is referenced
from the Interpolate basis-class method. Additionally, a
factory function called interpolate (aliased as interp) pro-
vides an easy interface for interpolating along multiple axes,
specified using keyword arguments, by composing the appro-
priate integration methods:

interp(f, x=0.5, y=1)
# xbasis.Interpolate(
# ybasis.Interpolate(f, 1), 0.5)

If the operand’s metadata indicates that it is constant along
the interpolation axis, instantiation will be skipped and the
operand itself will be returned.

4. Hilbert transforms

The Hilbert transform of a function f (x) is the principal-
value convolution with (πx)−1:

H( f )(x) = 1
π

p.v.
∫ ∞

−∞

f (x ′)
x − x ′

dx ′. (66)

The Hilbert transform has a particularly simple action on si-
nusoids,

H(exp(ik x))(x) = −isgn(k) exp(ik x) (67)

The actions on cosine/sine functions result from taking the
real/imaginary parts. The Hilbert transform is implemented
as a separable operator for the Fourier and SinCos bases and
referenced from the HilbertTransform basis-class methods.
These methods are aliased as e.g. Hx for a basis with name 'x
'. Additionally, a factory function called hilberttransform
(aliased as H) provides an easy interface for constructing
higher-order and mixed Hilbert transforms using the basis
names, similar to the differentiate factory function. The
Hilbert transform subclasses also examine the 'constant'
metadata of their operand, and return 0 instead of instanti-
ating an operator if the operand is constant along axis to be
transformed.

E. User-specified functions

The GeneralFunction class wraps and applies general
Python functions to field data in any specified layout. For
example, a user-defined Python function func(A, B) which
accepts and operates on grid-space data arrays, can bewrapped
into aDedalus Operator for deferred evaluation usingDedalus
fields fA and fB as

GeneralFunction(func , args=(fA, fB), layout='g')

§XI F gives a detailed example.

F. Manipulating expressions

The operator classes also implement a number of methods
allowing the algebraic manipulation of operator expressions,
i.e. a simple computer-algebra system. §VIII describes how
this enables the construction of solvers for general partial dif-
ferential equations.
These methods include:
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• atoms: recursively constructs the set of leaves of an
expression matching a specified type.

• has: recursively determines whether an expression con-
tains any specified operand or operator type.

• expand: recursively distributesmultiplication and linear
operators over sums of operands containing any speci-
fied operand or operator type. It also distributes deriva-
tives of products containing any specified operand or
operator type using the product rule.

• canonical_linear_form: first determines if all the
terms in an expression are linear functions of a specified
set of operands, and raises an error otherwise. In the
case of nested multiplications, it rearranges the terms so
that the highest level multiplication directly contains the
operand from the specified set.

• split: additively splits an expression into a set of terms
containing specified operands and operator types, and a
set of terms not containing any of them.

• replace: performs a depth-first search of an expres-
sion, replacing any instances of a specified operand or
operator type with a specified replacement.

• order: recursively determines the compositional order
of a specified operator type within an expression.

• sym_diff: produces a new expression containing the
symbolic derivative with respect to a specified variable.
The derivative is computed recursively via the chain
rule.

• as_ncc_operator: constructs the NCC multiplication
matrix associated with multiplication by the expression.
It requires that the corresponding domain only have a
single polynomial basis, and that this basis forms the
last axis of the domain. It further requires that the ex-
pression is constant along all other (“transverse”) axes,
so that multiplication by the operand does not couple
the transverse modes. The method first evaluates the ex-
pression, then builds the NCC matrix with the resulting
coefficients. The method allows the NCC expansion to
be truncated at amaximumnumber ofmodes (Nm < Nc)
and for terms to be excluded when the coefficient am-
plitudes are below some threshold (| fn | < δ) so that the
matrix is sparse for well-resolved functions (see §II B 3).

• operator_dict: constructs a dictionary representing
an expression as a set of matrices acting on the speci-
fied pencils of a specified set of variable. This method
requires that the expression be linear in the specified
variables and contains no operators coupling any di-
mensions besides the last.
The dictionary is constructed recursively, with each
coupled linear operator applying its matrix form to its
operand matrices, and each transverse linear operator
multiplying its operand matrices by the proper element
of its vector form. Addition operators sum the matrices

produced by their operands. Multiplication operators
build the matrices for the operand containing the speci-
fied variables. They then multiply these matrices by the
NCC matrix form of the other operand.

G. Evaluators

An Evaluator object attempts to simultaneously evaluate
multiple operator expressions, or tasks, as efficiently as pos-
sible, i.e. with the least number of spectral transforms and
distributed transpositions. Tasks are organized into Handler
objects, each with a criterion for when to evaluate the han-
dler. Handlers can be evaluated on a specified cadence in
terms of simulation iterations, simulation time, or real-world
time (wall time) since the start of the simulation. Handlers
from the SystemHandler class organize their outputs into a
FieldSystem, while handlers from the FileHandler class
save their outputs to disk in HDF5 files via the h5py package
(§X). The add_task method adds tasks to a handler and ac-
cepts operator expressions or strings (which are parsed into
operator expressions using a specified namespace).

When triggered, the evaluator examines the attached han-
dlers and builds a list of the tasks from each handler scheduled
for evaluation. The evaluator uses the attempt methods to
evaluate the tasks as far as possible without triggering any
transforms or transpositions. If the tasks have not all com-
pleted, the evaluator merges the remaining atoms from the
remaining tasks, and moves them all to full coefficient space,
and reattempts evaluation. If the tasks are still incomplete,
the evaluator again merges the remaining atoms from the re-
maining tasks, moves them forward one layout, and reattempts
evaluation. This process repeats, with the evaluator simulta-
neously stepping the remaining atoms back and forth through
all the layouts until all of the tasks have been fully evaluated.
Finally, the processmethod on each of the scheduled handlers
is executed.

This process is more efficient than sequentially evaluating
each expression. By attempting all tasks before changing lay-
outs, it makes sure that no transforms or transpositions are
triggered when any operators are able to be evaluated. Addi-
tionally, it groups together all the fields that need to be moved
between layouts so that grouped transforms and transpositions
can be performed to minimize overhead and latency.

VIII. PROBLEMS

Problem classes construct and represent systems of PDEs.
Separate classes manage linear boundary value problems
(LBVP), nonlinear boundary value problems (NLBVP), eigen-
value problems (EVP), and initial value problems (IVP). After
creating a problem, the equations and boundary conditions are
entered in plain text, with linear terms on the LHS and nonlin-
ear terms on the RHS. The LHS is parsed into a sparse matrix
formulation, while the RHS is parsed into an operator tree to
be evaluated explicitly.
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A. Problem creation

Each problem class is instantiated with a domain and a list of
variable names. Domainsmay have amaximumof one polyno-
mial basis, which must correspond to the last axis. The linear
portion of the equations must be no higher than first-order
in time and coupled derivatives. Auxiliary variables must be
added to render the system first-order. Optionally, an ampli-
tude threshold and a cutoff mode number can be specified for
truncating the spectral expansion of non-constant coefficients
on the LHS. For eigenvalue problems, the eigenvalue name
must also be specified; it cannot be 'lambda' since this is a
Python reserved word. For initial value problems, the tempo-
ral variable name can optionally be specified, but defaults to
't'.

For example, to create an initial value problem for an equa-
tion involving the variables u and v, we would write

problem = de.IVP(domain , variables=['u', 'v'])

B. Variable metadata

Metadata for the problem variables is specified by indexing
the problem.meta attribute by variable name, axis, and then
property.

The most common metadata to set is the 'constant'
flag for any dimension, the 'parity' of all variables for
each SinCos basis, the 'envelope' flag for the Hermite and
Laguerre bases, and the 'dirichlet' flag for recombining
the Chebyshev, Legendre, and Laguerre bases (enabled by
default). Default metadata values are specified in the basis
definitions.

For example, we can set the parity of variables in our prob-
lem along the x axis with

problem.meta['u']['x']['parity '] = 1 # cosine
problem.meta['v']['x']['parity '] = -1 # sine

C. Parameters and non-constant coefficients

Before adding the equations, any parameters (fields or
scalars used in the equations besides the problem variables)
must be added to the parsing namespace through the problem
.parameters dictionary. Scalar parameters are entered by
value. Non-constant coefficients (NCCs) are entered as fields
with the desired data. NCCs on the LHS can only couple poly-
nomial dimensions; an error will be raised if the `constant'
metadata is not set to True for all separable axes.
For example, we would enter scalar and NCC parameters

for a 3D problem on a double-Fourier (x, y) and Chebyshev
(z) domain as:

# Scalar parameter
problem.parameters['A'] = 1e-4

# NCC parameter
z = domain.grid(2)

ncc = domain.new_field ()
ncc.meta['x', 'y']['constant '] = True
ncc['g'] = z**2
problem.parameters['B'] = ncc

D. Substitutions

One of the most powerful features of Dedalus is the ability
to define substitutions which act as string-replacement rules to
be applied during the equation parsing process. Substitutions
can be used to provide short aliases to quantities computed
from the problem variables and to define functions similar
to Python lambda functions, but with normal mathematical-
function syntax.
For example, several substitutions that might be useful in a

hydrodynamical simulation are:

# Substitution defining the kinetic energy
# density for a 3D fluid simulation with
# density rho and velocity (u,v,w).
problem.substitutions['KE_density '] = \

"rho * (u*u + v*v + w*w) / 2"

# Substitution defining the Cartesian Laplacian
# of a field. Here A and Az are dummy variables
# that would be replaced by simulation variables
# in the equations. Note the system is written
# in first -order form along the z dimension.
problem.substitutions['L(A,Az)'] = \

"dx(dx(A)) + dy(dy(A)) + dz(Az)"

Substitutions of the first type are created by parsing their def-
initions in the problem namespace, and aliasing the result to
the substitution name. Substitutions of the second type are
turned into Python lambda functions producing their specified
form in the problem namespace. Substitutions are compos-
able, and form a powerful tool for simplifying the entry of
complex equation sets.

E. Equation parsing

Equations and boundary conditions are entered in plain text
using the add_equation and add_bc methods. Optionally,
these methods accept a condition keyword, which is a string
specifying which transverse modes that equation applies to.
This is necessary to close certain equation sets where, for
example, the equations become degenerate for the transverse-
mean mode and/or certain variables require gauge conditions.
First, the string-form equations are split into LHS and RHS

strings which are evaluated over the problem namespace to
build LHS and RHS operator expressions. The problem
namespace consists of:

• The variables, parameters and substitutions defined in
the problem.

• The axis names representing the individual basis grids.

• The derivative, integration, and interpolation operators
for each basis.
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• Time and temporal derivatives for the IVP (defaulting
to 't' and 'dt').

• The eigenvalue name for the EVP.

• The universal functions wrapped through the
UnaryGridFunction class.

A number of conditions confirming the validity of the LHS
and RHS expressions are then checked. For all problem types,
the LHS expression and RHS must have compatible metadata
(e.g. parities). The LHS expressionmust be nonzero and linear
in the problem variables. The LHS must also be first-order in
coupled derivatives. The expressions entered as boundary
conditions must be constant along the last axis.

For the individual problem classes, the following additional
restrictions andmanipulations are applied to the LHS and RHS
expressions:

1. Linear boundary value problems

The linear boundary value problem additionally requires
that the RHS is independent of the problem variables. This
allows for linear problems with inhomogeneous terms on the
RHS. Since the LHS terms are linear in the problem variables,
this symbolically corresponds to systems of equations of the
form

L · X = F (68)

where X is the state vector of variable fields, and L is a
matrix of operators. The LHS expressions are expanded and
transformed into canonical linear form before being stored by
the problem instance.

2. Nonlinear boundary value problems

Nonlinear boundary value problems are systems of the form

L · X = F (X) (69)

The RHS can be any nonlinear function of the problem vari-
ables. In addition to the L ·X and F expressions, the problem
constructs the Frechet differential of the RHS with respect to
the problem variables:

FX · ∆X = ∂εF (X + ε∆X)|ε=0. (70)

This linear operator indicates the sensitivity, or directional
functional derivative, of F with respect to changes in X along
∆X. It is constructed symbolically using the operator methods
described in §VII F roughly as
dF = 0
for var , pert in zip(vars , perts):

dFi = F.replace(var , var + ep*pert)
dFi = dFi.sym_diff(ep)
dFi = dFi.replace(ep, 0)
dF += dFi

In general, the Frechet derivative of an expression will con-
tain non-constant coefficients involving the problem variables
X, which would generally couple horizontal modes. There-
fore, Dedalus only supports 1D NLBVPs. The LHS and
Frechet differential expressions are expanded and transformed
into canonical linear form before being stored by the problem
instance.

3. Eigenvalue problems

The eigenvalue problem requires that the RHS is zero, and
that the LHS terms must be linear in or independent of the
eigenvalue, which we refer to as σ. This corresponds to sys-
tems of equations of the form

σM · X + L · X = 0 (71)

which are generalized linear eigenvalue problems. TheM ·X
and L · X expressions are extracted by splitting the LHS ex-
pression on the presence of the eigenvalue variable, before
replacing it with 1. These expressions are expanded and trans-
formed into canonical linear form before being stored by the
problem instance.

4. Initial value problems

The initial value problem requires that the LHS coefficients
are time independent, the LHS is first-order in time derivatives,
and the RHS has no time derivatives. This corresponds to
systems of the form

M · ∂tX + L · X = F (X, t). (72)

TheM ·X and L ·X expressions are extracted by splitting the
LHS expression on the presence of the time derivative dummy
operator, before replacing it with the identity operator. These
expressions are expanded and transformed into canonical lin-
ear form before being stored by the problem instance.

IX. SOLVERS

Each problem type has a corresponding solver type which
builds the spectral matrices for the problem equations, imple-
ments methods for computing the solution to the equations,
and stores the solution state as a FieldSystem.

A. Matrix construction

The problem classes begin by building the operator matrices
for the LHS expression groups (M · X, L · X, and/or FX ·
∆X). The matrices are constructed by first taking the set of
equations and boundary conditions that apply to each pencil
and calling the operator_dict method on each expression to
build the matrices acting on the corresponding coefficients of
the problem variables. For each pencil’s matrix to be solvable,
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the number of applicable equations must equal the number of
variables in the problem, S. For a given pencil, we refer to
the operator matrix from the i-th equation acting on the j-th
variable as e.g. Li, j . Each of these matrices is processed as
follows:

• If the i-th equation is constant along the coupled di-
rection, then all rows except the first of each Li, j are
dropped.

• If the i-th equation contains a coupled derivative on
the LHS, each Li, j is left-multiplied by the basis pre-
conditioner matrix, which renders the derivative matrix
banded (e.g. the T-to-U conversion for Chebyshev bases;
see §II B 1).

• By default, if the i-th equation contains a coupled deriva-
tive on the LHS, the last row of each Li, j is dropped and
replaced with one of the boundary conditions. The key-
word option tau in the problem.add_equationmethod
overrides this default behavior and explicitly forces or
prevents the solver from replacing the last row in that
equation. This implements boundary conditions using
the tau method (see §II A 2). For the system to be solv-
able, it typically requires the same number of boundary
conditions as coupled differential equations. The tau
keyword allows for non-standard cases, such as prob-
lems with singular end points.

• If the last basis is compound, the rows corresponding
to the final coefficient of each sub-basis, except for the
last, are dropped and replaced with internal boundary
conditionsmatching the sub-basis values at each internal
interface for each variable. This enforces continuity of
all variables across the subsegments.

• If the j-th variable has been marked as constant along
the coupled direction, then all columns except the first
of each Li, j are dropped.

• If the j-th variable has been marked for Dirichlet pre-
conditioning (enabled by default), then each Li, j is right-
multiplied by the Dirichlet conversion matrix. This has
the effect of rearranging the columns so that the ma-
trix acts on the coefficients of the Dirichlet expansion
of the corresponding variable, rendering all Dirichlet
boundary conditions banded (see §II B 2).

Finally, the processed operator matrices are joined to pro-
duce the full preconditioned pencil matrix L̃. The matrices
are interleaved so that the columns and rows are grouped by
mode rather than by field (see §II B 4). The bandwidth of
the pencil matrix then becomes S times the maximum band-
width of any of the individual sub-blocks, which is roughly
set by the bandwidth of the non-constant coefficient expan-
sions. Interleaved-block matrices PL

p and PR combining all
the left and right preconditioners, projections, and reorderings
are created and stored, since they will need to be applied to
the RHS and solution vectors, respectively, when solving the
matrix system.

The pencil matrices are stored as Scipy sparse matrices.
The matrices produced for each of the LHS expression groups
(M·X,L·X, and/orFX ·∆X) are expanded to occupy the union
of their sparsity patterns so that they can be added efficiently.

B. Linear boundary value solver

The linear boundary value solver is instantiated from a lin-
ear boundary value problem. It first constructs the matrices
L̃p = PL

p LpPR for each local pencil p from the stored LHS
expression group L · X. Here PL

p and PR explicitly indicate
that the expression matrices have been preconditioned from
the left and the right, and the p subscripts indicate that the left
preconditioner and expression matrices vary by pencil. The
solver then constructs a system handler for evaluating the RHS
equation and boundary condition expressions (F ).
The solver class contains a solvemethod, which first evalu-

ates the RHS handler for F . At this point, the linear boundary
value problem is fully discretized, and conceptually consists of
solving an independent matrix problem for each pencil given
by

LpXp = Fp (73)

The equivalent preconditioned system is given by

PL
p LpPR︸    ︷︷    ︸

L̃p

(PR)−1Xp︸     ︷︷     ︸
X̃p

= PL
p Fp︸︷︷︸
F̃p

(74)

For each pencil, this system is solved in the following manner:

• The RHS vector Fp is constructed by taking the pencil
data from the RHS handler.

• The pencil’s left-preconditioner is applied to FP to pro-
duce F̃p .

• Since L̃p is sparse and banded, it can be efficiently solved
against F̃p to produce X̃p .

• The state-vector pencil is recovered from X̃p by reap-
plying the right-preconditioner as

PR X̃p = PR(PR)−1Xp = Xp (75)

and the result is assigned to the state-vector
FieldSystem.

After the RHS is evaluated, this process is trivially paral-
lelized over pencils, with each process performing a series of
local sparse matrix solves for its local pencils. The sparsity
and bandedness of the matrix L̃p makes the linear solve an
efficient process, executing in O(Nc

D) time. Finally, although
(PR)−1 is a dense matrix, it never needs to be constructed, as
reapplying the sparse PR matrix to the output of the linear
solve reverses the implicit preconditioning of the unknowns.
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C. Nonlinear boundary value solver

The nonlinear boundary value solver is instantiated from the
nonlinear boundary value problem. It constructs the matrices
L̃p for each pencil and handlers for evaluating the expressions
F and L · X.
The solver class contains a newton_iteration method,

which performs a single iteration of Newton’s method to move
the state vector towards the nonlinear solution. Conceptu-
ally, the Newton step iteratively approaches the solution of the
nonlinear problem

LpXp = F(X)p (76)

by solving for the update δXn to the state vector that will cause
the future state vector Xn+1 = Xn + δXn to solve the NLBVP
when linearized around the current iteration Xn:

LpXn+1
p = F(Xn+1)p (77)

Lp(Xn
p + δXn

p ) = F(Xn + δXn)p (78)
≈ F(X)p + FXδXp (79)

=⇒ (Lp − FX )︸      ︷︷      ︸
Ap

δXp ≈ F(X)p − LpXp︸             ︷︷             ︸
Bp

(80)

The Newton iteration begins by evaluating the RHS handlers
for F andL ·X and building the matrices F̃p , which discretize
the Frechet-derivative of F using the current state vector. For
each pencil, the update is then determined in the following
manner:

• The RHS vector Bp is constructed by combining the
pencil data from the RHS handlers.

• The left-preconditioner is applied to produce B̃p .

• The LHS matrices are combined to produce Ãp , which
is solved against B̃p to produce δX̃p .

• The right-preconditioner is applied to recover δXp .

• The state vector is updated as Xp → Xp + δXp .

We note that the sparse matrix being solved changes at each
iteration, since it depends on the evaluation of the Frechet
derivative at the current state vector. The magnitude of the
perturbations can be monitored to determine when the solver
has converged. Convergence can depend sensitively on the
initial values of the state vector, but the iterations converge
rapidly (quadratically) for sufficiently good starting positions.
The initial conditions are set by modifying the fields in the
solver.state FieldSystem.

D. Eigenvalue solver

The eigenvalue solver is instantiated from the eigenvalue
problem. It constructs the M̃p and L̃p matrices and solves the
eigenvalue problem for a single pencil at a time, storing the
resulting eigenvalues and eigenvectors. The class contains a

set_state method which will set the solver’s state vector to
the specified eigenmode for visualization or further computa-
tion.
The solver class contains two methods for solving the gen-

eralized eigenvalue problem for a specified pencil, which con-
ceptually takes the form

σMpXp + LpXp = 0. (81)

1. Dense solver

The first is the solve_dense method, which converts the
LHS matrices to dense arrays and uses the scipy.linalg.
eig routine to directly solve the full generalized eigenvalue
problem. This has the advantage of solving for all of the SNc

D
eigenmodes of the discretized system. However, the computa-
tional cost scales as O((SNc

D)3), which becomes prohibitive at
large resolutions.

2. Sparse solver

The second is the solve_sparse method, which solves for
a subset of the eigenmodes near a specified target eigenvalue
σT . The generalized problem for the preconditioned matrices
is first rearranged as a regular eigenvalue problem using a shift
and inversion:

(L̃p + σT M̃p)−1M̃p︸                  ︷︷                  ︸
Ãp

X̃p = −
1

(σ − σT )
X̃p = λp X̃p (82)

A Scipy sparse linear operator is constructed to repre-
sent the left-side operator Ãp . This is applied to a vec-
tor by first applying M̃p , and then solving the result against
(L̃p + σT M̃p). This generalized linear operator is then passed
to the scipy.sparse.linalg.eig routine, which uses the
implicitly-restarted Arnoldi method in ARPACK to iteratively
compute a specified number of eigenmodes with the largest
magnitude λ. The right-preconditioner is applied to the result-
ing eigenmodes to recover Xp , and the computed values of λ
are inverted and shifted to recover the corresponding σ.
This shift-and-invert formulation allows using sparse regu-

lar eigenvalue solvers for the generalized eigenvalue problem,
with the requirement that (L̃p + σT M̃p) is full rank.

E. Initial value solver

The initial value solver is instantiated from the initial value
problem with one of the timestepping classes as an argument,
defining the integrator to be used to step the problem forward
in time. The solver constructs the M̃p and L̃p matrices for each
pencil and a handler for evaluating the RHS expressions F .
Conceptually, the discretized problem takes the form

Mp∂t Xp + LpXp = F(X, t)p (83)
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where the systems for different pencils are only coupled
through the RHS terms. In general, Mp may not be a full-
rank matrix, due to the presence of constraint equations and
boundary conditions. This system is integrated using mixed
implicit-explicit schemes, where the LHS terms are integrated
implicitly, and the RHS terms are integrated explicitly. The
timestepping loop is written by the user, allowing for detailed
control of and interaction with the model as timestepping pro-
gresses.

1. Initial conditions

The solver’s initial state must be set before beginning a
simulation. The solver state is stored in the solver.state
field system, and initial conditions are set by directlymodifying
the variables in this system before beginning integration, e.g.:

# Set the initial u field
x = domain.grid(0)
u = solver.state['u']
u['g'] = np.cos(x)

When possible, it is best to begin a simulation with consis-
tent initial conditions that satisfy the constraint equations and
boundary conditions; see §XI E. Initial conditions that are in-
consistent may introduce persistent errors or stability problems
with some timestepping schemes.

Initial conditions can also be loaded from the analysis
files produced by Dedalus (§X) via the solver.load_state
method. This is particularly useful for restarting simulations
from a checkpoint saved by a previous simulation.

2. Time evolution

The step method of the initial value solver advances the
state by one timestep, producing Xn+1 from Xn, where the su-
perscripts denote the temporal iteration of the state vector. The
method accepts the timestep dt as an argument. The method
then gathers the state system, calls the specified integration
routine to update the system, and scatters the updated state
system back to the field objects. In general, the integration
step will evaluate the RHS handler to perform the temporal in-
tegration and will simultaneously evaluate any other scheduled
handlers (e.g. analysis tasks) attached to the evaluator.

3. Timestep determination

The implemented timestepping schemes accommodate
changing the timestep between iterations during a simulation.
While the user can implement any desired algorithm for deter-
mining the timestep, the CFL class in the dedalus.extras.
flow_tools module can help determine what timestep might
adequately resolve physical timescales in the evolving solution.
The add_frequencies and add_velocities methods allow
users to enter expressions corresponding to state-dependent

frequencies and velocities of processes in their simulation, us-
ing the same string-based parsing system that is used to enter
equations. CFL frequencies are derived from the entered ve-
locities by dividing their values by the grid spacing. Internally,
the CFL class builds an auxiliary handler to evaluate these fre-
quencies at a specified cadence, and as the simulation runs the
suggested timestep is determined via the compute_dt method
as follows:

• At each point on the grid, all of the specified frequencies
are added.

• The maximum total frequency from the entire grid is
taken and inverted to determine the CFL timestep.

• This timestep is then multiplied by a safety factor (typi-
cally 0.1 − 0.5), specified at the CFL instantiation with
the safety keyword.

• The resulting timestep is then bounded to lie with abso-
lute levels set by the min_dt and max_dt keywords, and
a within relative factors of the previous timestep set by
the min_change and max_change keywords.

• If the fractional change from the previous timestep
to the newly determined timestep is smaller than the
threshold parameter, the previous timestep is returned.
Otherwise, the newly determined timestep is returned.

The absolute limits can be useful to prevent the timestep from
vastly overstepping relevant dynamics or grinding to a halt
due to a spurious feature of the solution. The relative limits
help prevent ill-conditioning that may occur for some schemes
when the timestep varies too suddenly. The thresholding op-
tion allows the timestep to be frequently reevaluated but avoids
modifying it by inconsequential amounts. This can have sig-
nificant performance advantages since factorizations of the
IVP matrices are stored and reused when the timestep remains
the same between iterations.

4. Termination

To help determine when a simulations should terminate, the
initial value solver implements the proceed property, which
determines whether any of the following three criteria apply:

• The simulation time has exceeded the value assigned to
the solver.stop_sim_time attribute.

• The wall time (in seconds) since the solver was instan-
tiated has exceeded the value assigned to the solver.
stop_wall_time attribute.

• The iteration count has exceeded the value assigned to
the solver.stop_iteration attribute.

The wall-time stop is particularly useful for stopping simula-
tions before hard time-limits on cluster job submissions have
been reached, allowing for clean termination and potential
post-processing of the data before a job is terminated by the
system.
A simple timestepping loop in an IVP can take the form:
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while solver.proceed:
dt = CFL.compute_dt ()
solver.step(dt)

This will continue timestepping until any of the specified stop-
ping criteria have been reached, adjusting the timestep along
the way via the CFL handler.

F. Timesteppers

Rather than implementing a single specific timestepping
scheme, Dedalus implements general algorithms for applying
mixed implicit-explicit (IMEX) multistep and Runge-Kutta
integrators along with a range of specific integrators of each
type. These IMEX schemes implicitly integrate the LHS terms
and explicitly integrate the RHS terms. This provides temporal
stability for linearly stiff equations without requiring iterative
algorithms for integrating the nonlinear terms.

1. Multistep IMEX integrators

A general multistep IMEX scheme with s steps temporally
discretizes preconditioned systems of the form of Eq. (83) into
the general form

s∑
j=0

aj M̃p X̃n−j
p +

s∑
j=0

bj L̃p X̃n−j
p =

s∑
j=1

cj F̃
n−j
p (84)

where in general the coefficients aj , bj , and cj depend on
the timesteps separating the steps, dtn−1 = tn − tn−1. This
expansion is rearranged to solve for the new state Xn

p as

(a0M̃p + b0 L̃p)︸             ︷︷             ︸
Ãn
p

X̃n
p =

s∑
j=1

cj F̃
n−j
p − aj M̃p X̃n−j

p − bj L̃p X̃n−j
p︸                                           ︷︷                                           ︸

B̃n
p

(85)
The MultistepIMEX class implements this structure using

double-ended queues to store CoeffSystems containing M̃ X̃ ,
L̃ X̃ , F̃, and dt for the s most recent steps. The class implements
a step method, called with the latest timestep dtn−1, which
produces Xn as follows:

• The timestep queue is rotated with the newest value
replacing the oldest and the scheme coefficients aj , bj ,
cj are evaluated using the timestep history.

• M̃ X̃n−1 and L̃ X̃n−1 are evaluated for all local pencils
without building the dense inverse of the right precon-
ditioner as e.g.

L̃p X̃p = PL
p LpPR(PR)−1Xp = PL

p LpXp (86)

• The RHS handler is evaluated and the data for each
pencil is left-preconditioned and stored in the F̃n−1 co-
efficient system.

• For each pencil, Ãn
p is solved against B̃n

p to produce X̃n
p .

A matrix solver which stores and reuses factorizations
of each Ãn

p can reduce the solve time if the coefficients
a0 and b0 remain unchanged from the previous iteration.

• Applying the right-preconditioner recovers the state vec-
tor Xn

p .

Specific multistep schemes are implemented as subclasses
of the MultistepIMEX and define the scheme coefficients aj ,
bj , and cj via the compute_coefficients method. Dedalus
currently implements a number of Crank-Nicolson leap-frog,
Crank-Nicolson Adams-Bashforth, and semi-implicit BDF
methods from Wang and Ruuth [91], ranging from first to
fourth order schemes. The multistep methods only require a
single evaluation of the RHS per iteration. However, since
they depend on previous iterations, they cannot run full-order
when beginning a simulation. Instead, each scheme falls back
on lower-order schemes for the first s iterations of a simula-
tion. Multistep schemes may also become ill-conditioned if
the timestep is varied abruptly.

2. Runge-Kutta IMEX integrators

A general Runge-Kutta IMEX scheme temporally dis-
cretizes preconditioned systems of the form of Eq. (83) by
constructing stages indexed by i = 1, ..., s as

M̃p X̃n,i
p − M̃p X̃n,0

p +dt
i∑

j=0
Hi, j L̃p X̃n, j

p = dt
i−1∑
j=0

Ai, j F̃
n, j
p (87)

where F̃n, j is evaluated at time tn, j = tn,0 + dtcj , Xn,0 = Xn,
and tn,0 = tn. The H, A, and c tableaus define a specific
scheme. This expansion is rearranged to sequentially solve for
the stages as

(M̃p + dtHi,i L̃p)︸               ︷︷               ︸
Ãi
p

X̃n,i
p =

M̃p X̃n,0
p + dt

i−1∑
j=0

Ai, j F̃
n, j
p − dt

i−1∑
j=0

Hi, j L̃p X̃n, j
p︸                                                      ︷︷                                                      ︸

B̃i
p

(88)

We implement “globally stiffly accurate” methods where the
final stage is the advanced solution, i.e. Xn+1 = Xn,s and
tn+1 = tn,s = tn + dt. These schemes do not require M̃p to be
full rank, which it generally is not for Dedalus problems with
algebraic constraints and/or boundary conditions.

The RungeKuttaIMEX class implements this structure using
CoeffSystems to store M̃ X̃n,0 as well as L̃ X̃n,i and F̃n,i for
all of the stages. The class implements a step method, called
with the timestep dt, which produces Xn+1 as follows:

• M̃p X̃n,0 is evaluated for all local pencils.

• Then for each stage i = 1, ..., s:
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– The RHS handler is evaluated and the data for
each pencil is left-preconditioned and stored in
the F̃n,i−1 coefficient system. For each pencil,
L̃p X̃n,i−1 is also evaluated.

– For each pencil, Ãi
p is solved against B̃i

p to produce
X̃n,i
p . A matrix solver which stores and reuses the

factorizations of each Ãi
p can be used to reduce

the solve time if the timestep dt has remained un-
changed from the previous iteration.

– The right-preconditioner is applied to recover Xn,i
p ,

which is assigned to the state-vector. The solver
simulation time is set to tn,0 + dtci .

Specific multistep schemes are implemented as subclasses
of the RungeKuttaIMEX base class and define the H, A, and
c tableaus. Dedalus currently implements a number of first,
second, and third-order methods from Ascher et al. [92] and
Sprague et al. [93]. A particular advantage of the Runge-Kutta
methods is that they do not depend on any previous iterations
of the state variables, so they can take full-order timesteps at
the beginning of a simulation and trivially accommodate adap-
tive timestepping. The cost is that the higher-order schemes
perform multiple evaluations of the RHS per iteration, but
they tend to run stably with larger CFL safety factors than the
multistep schemes.

The ease of switching integrators allows users to easily test
a variety of schemes to find the best option for their particular
problem. In addition, the multistep and Runge-Kutta base
classesmake it straightforward to implement new timestepping
schemes.

G. Matrix solvers

Dedalus implements a generic interface for matrix solvers
in the dedalus.libraries.matsolvers module which sim-
plifies the implementation and comparison of different rou-
tines. The primary routines are direct sparse matrix solvers
from the SuperLU and UMFPACK libraries, wrapped through
scipy.sparse package. For each library, we implement fast
single-solve routines as well as routines that store and apply
the factorized form of a matrix. These routines enable fast
solves against multiple right-hand sides at the expense of ini-
tially computing the factorization. This is particularly useful
for initial value problemswhere the timestep is fixed or varying
slowly.

Additional routines implement a variety of algorithms spe-
cialized to banded matrices and block-diagonal matrices,
which result from full-Fourier problems and can be efficiently
inverted. The solver interface is designed to be easily exten-
sible, allowing users to simply wrap and test new routines for
specific problems.

Thematrix solver routine can be specifiedwhen instantiating
a Solver object, and the default can be set using the Dedalus
configuration interface.

X. ANALYSIS AND POST-PROCESSING

The Dedalus handler system enables saving arbitrary analy-
sis tasks while an initial value problem is running. This system
utilizes the same symbolic parsing system as is used to specify
equations and efficiently evaluates the analysis tasks alongside
the RHS terms on a specified cadence. Post-processing tools
simplify merging and interacting with the resulting analysis
files.

A. File handlers

After building a initial value solver, instances of the
FileHandler class can be attached to the solver’s evaluator
object to coordinate the periodic output of some simulation
data to HDF5 files using the h5py library. Each file handler
is instantiated with an output directory path and the cadence
at which handler’s tasks will be evaluated. This cadence can
be in terms of any combination of simulation time (specified
with sim_dt), wall time (specified with wall_dt), and itera-
tion (specified with iter). Simulation time cadences are often
useful for data analysis; wall time cadences are often useful
for checkpointing, e.g. saving the full state of a simulation
every hour. To limit the file sizes produced by the handler,
the outputs are split up into different sets over time, each con-
taining some number of writes that can be limited with the
max_writes keyword. For example, to setup a file handler to
be evaluated every few iterations:

output = solver.evaluator.add_file_handler(
'output ', iter=5, max_writes=100)

Multiple file handlers can compute and save different sets
of tasks at different cadences. For example, you may want to
occasionally save full copies of the state variables for check-
pointing, more frequently save snapshots of some variables for
visualization, and very frequently save scalar quantities such
as the total energy in the simulation.

B. Analysis tasks

Tasks, or expressions to be computed and saved by the file
handler, are added to a given handler using the add_task
method. Tasks are entered in plain text and parsed using the
same namespace that is used for equation entry. For each
task the output layout, scaling factors, and a name can also be
specified. For example, creating a task to evaluate the kinetic
energy density of a flow might look like:

output.add_task("0.5*rho*(u**2+v**2+w**2)",
layout='g', name='KE')

For checkpointing, you can also simply specify that all of the
state variables should be saved:

output.add_system(solver.state , layout='g')
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C. Post-processing

By default, the output files for each file handler are arranged
hierarchically as follows:

1. At the top level is output directory that was specified
when the handler was constructed, e.g. './output/'.

2. Within this directory are subdirectories for each set of
outputs, with the same name plus a set number, e.g.
'output_s1/'.

3. Within each subdirectory are HDF5 files containing the
local data for each process, with the same name plus a
process number, e.g. output_s1_p0.h5.

Often it is preferable to deal with the global dataset when
performing analysis or visualization in post-processing. The
distributed process files can be merged into global files for
each set using the merge_process_files function from the
dedalus.tools.post module. For some analyses, it is ad-
ditionally convenient to merge the output sets together into
a single file that is global in space and time, which can be
done with the merge_sets function. However, this can gener-
ate very large files, and is not usually necessary for analyses
that are local in time, e.g. individually plotting each output of
a task. To assist with performing such tasks in parallel, the
visit_writes function will coordinate all available processes
to apply a given function to each output across all sets from a
handler.

Together, the symbolic specification of analysis tasks and
helper functions for merging and interacting with the output
files can dramatically simplify user interactions with simula-
tion products. High-level plotting functions for plotting slices
of fields and tasks are implemented in the dedalus.extras.
plot_toolsmodule, and example scripts utilizing these tools
to construct visualizations in parallel are available. The HDF5
output file format was chosen because it is widely used in the
scientific community, and allows users to easily examine and
visualize simulation outputs using a wide variety of tools and
languages.

XI. BENCHMARKS AND EXAMPLES

Wedemonstrate the features and performance of theDedalus
codebase with a variety of examples involving different types
of PDEs from a variety of fields. The examples and some of
the unique features that they demonstrate are:

• Parallel scaling: strong scaling test of an incompress-
ible hydrodynamics IVP across many nodes.

• Kelvin-Helmholtz: accuracy benchmark of compress-
ible hydrodynamics with a finite-volume code.

• Nonlinear Schrödinger Network: complex-valued
PDE on a network of 1D segments, programatic ex-
tension of Dedalus interface to form spectral element
method.

• Orszag-Tang Vortex: moderate Mach-number vortices
in compressible magnetohydrodynamics, regularized
and resolved shocks.

• Quasigeostrophic Flow: asymptotically reduced equa-
tions for rotating incompressible flow, LBVP to balance
initial conditions.

• Cylindrical Stokes Flow: low Reynolds-number flow
in an annulus using polar coordinates and non-constant
coefficients.

• Atmospheric Waves: NLBVP to solve for the struc-
ture of an atmosphere with radiative diffusion, EVP to
examine normal modes.

• Diamagnetic Levitation: electrodynamics and rigid
body mechanics, immersed boundaries, ODE integra-
tion, non-local boundary conditions.

Example scripts for these problems are available online7.
The project gallery8 is updated with user contributed examples
on an ongoing basis.

A. Parallel scaling

A parallel scaling suite9 for Dedalus is publicly available.
Fig. 8 shows performance and parallel scaling results from
32 to 2048 cores for 3D Boussinesq hydrodynamics and mag-
netohydrodynamics simulations in Fourier-Fourier-Chebyshev
domains. The tests were run on the Flatiron Institute’s Popeye
cluster10 using 32 Intel Ivy Bridge cores per node.
The code’s speed, as measured in mode-iterations per core-

second, is plotted against the number of cores, as measured
in pencils per core. The plateaus for each resolution indicate
the regions of ideal strong scaling; large 3D problems are able
to scale efficiently to thousands of cores. The roll off at high
core counts indicates the end of efficient strong scaling: the
parallel efficiency of Dedalus typically remains above 50%
down to 8 pencils per core. The ratios of the plateau values for
different resolutions indicate that the weak scaling efficiency
is proportional to 1/log N , as expected for FFT-based compu-
tations. Boussinesq hydro with 8 variables is twice as fast as
Boussinesq MHD with 16 variables, indicating that execution
time scales linearly with the number of problem variables.

B. Kelvin-Helmholtz accuracy benchmark

Lecoanet et al. [19] performed an accuracy benchmark com-
paring the finite-volume code Athena11 and Dedalus. Both

7 https://github.com/DedalusProject/methods_paper_examples
8 http://dedalus-project.org/gallery/
9 https://github.com/DedalusProject/scaling
10 https://www.sdsc.edu/support/user_guides/popeye-simons.html
11 https://github.com/PrincetonUniversity/Athena-Cversion

https://github.com/DedalusProject/methods_paper_examples
http://dedalus-project.org/gallery/
https://github.com/DedalusProject/scaling
https://www.sdsc.edu/support/user_guides/popeye-simons.html
https://www.sdsc.edu/support/user_guides/popeye-simons.html
https://github.com/PrincetonUniversity/Athena-Cversion
https://github.com/DedalusProject/methods_paper_examples
http://dedalus-project.org/gallery/
https://github.com/DedalusProject/scaling
https://www.sdsc.edu/support/user_guides/popeye-simons.html
https://github.com/PrincetonUniversity/Athena-Cversion
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Figure 8. Dedalus performance (mode-iterations per core-second)
vs parallel scaling (pencils per core) from 32 to 2048 cores for 3D
Boussinesq (a) hydrodynamics and (b) magnetohydrodynamics. Col-
ors correspond to different 3D (Fourier-Fourier-Chebyshev) resolu-
tions. For each resolution, the open circle indicates the run on 512
cores, with the core count increasing by factors of two to the right.
Efficient strong scaling is seen down to roughly 8 pencils per core.
Weak scaling shows the expected ∝ 1/log N efficiency for FFT-based
computations. Execution time scales linearly with the number of
problem variables.

codes simulated the Kelvin-Helmholtz instability in a mod-
erate Mach-number compressible flow. At low-to-moderate
resolution, numerical errors from the finite-volume method
can cause unphysical secondary instabilities to develop within
the rolls created by the flow. By directly comparing the non-
linear evolution of the flows at late times, the authors found
that the finite-volume method requires a resolution of 163842

cells to avoid these spurious instabilities and achieve the same
accuracy as Dedalus at a resolution of 20482 modes (Fig. 9).

This test demonstrates the power of high-order methods
for solving PDEs with smooth solutions. At low-to-moderate
Mach numbers with finite dissipation, the flow solution lacks
strong shocks and its spectral expansion converges rapidly.
Generally, for incompressible and low-Mach-number flows in
simple geometries, the rapid convergence of spectral methods
outweighs their larger per-iteration computation cost, making
them the ideal method for simulating a broad range of astro-
physical and geophysical flows.

Athena 
10242

Athena 
40962

Athena 
163842

Dedalus 
20482

Dedalus 
40962

t = 2

t = 4

t = 6

t = 8

Figure 9. Snapshots of a moderate Mach-number Kelvin-Helmholtz
instability test problem simulated at various resolutions with a finite-
volume code (Athena) and Dedalus. The finite-volume method intro-
duces small errors which trigger unphysical secondary instabilities
in the vortex rolls. These spurious instabilities disappear as the
simulation resolution is increased. Quantitative comparisons show
comparable accuracy between the finite-volume method with 163842

degrees of freedom and Dedalus with 20482 degrees of freedom.
Figure adapted from Lecoanet et al. [19]

C. Nonlinear Schrödinger Network

The nonlinear Schrödinger equation (NLS) is classical field
equation describing the dispersive behavior of wavepackets in
a weakly nonlinear medium [94]. The focusing NLS is a PDE
for the complex-valued field ψ given by

i
∂ψ

∂t
+

1
2
∂2ψ

∂x2 = −ψ |ψ |
2. (89)

In this example, we simulate the 1D NSE on a quantum graph,
i.e. a network of connected segments with differential equa-
tions (see Berkolaiko and Kuchment [95] and Noja [96] for
applications). This is achieved using a Dedalus domain with a
single Chebyshev segment but separate variables for the solu-
tion on each segment, each governed by the NSE and coupled
through their boundary conditions to mimic the network. This
demonstrates how the parsing system in Dedalus can be com-
bined with a simple Python workflow to mimic a spectral ele-
ment method by “connecting” distinct domains via boundary
conditions.
We begin by loading any user-defined network defined by

the planar positions of Nv-many vertices and a list of Ne-
many directed edges connecting two vertices. We then build
a domain with a single 1D, 64-mode Chebyshev basis, which
serves as the underlying elemental basis for the spectral ele-
ment method. We define an IVP by constructing variables and
adding equations for each edge. This is done by looping over
edges to create variable names encoding the edge index and
using Python string substitution to insert these names into the
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Figure 10. Evolution of the nonlinear Schrödinger equation on a
network, simulated by coupling the boundaries of different fields on
a 1D Chebyshev segment. A soliton initially isolated to one segment
scatters at the vertices and fills the network over time.

equations. This programatically adds Ne copies of the NLS to
the problem, one for each edge, with the derivative operators
weighted by the inverse of the corresponding edge length (Le)
to account for the different true lengths of the graph segments:

i
∂ψe

∂t
+

1
2L2

e

∂2ψe

∂x2 = −ψe |ψe |2, e = 1, ..., Ne . (90)

We encode edge-neighbor information using the graph inci-
dence matrix. Continuity of the solution at each vertex is
imposed by iteratively matching the solution at each incident
edge:

ψe(vn) = ψe′(vn), ∀ e, e′ incident to vertex vn. (91)

Finally, Kirchoff’s law for conservation of flux is imposed
at each vertex by requiring the sum of the gradients of the
solution on each incident edge, weighted by the edge lengths
and signed by whether the edge is incoming or outgoing to that
vertex (σe = ±1), to be equal to zero:∑

e∈vn

σe

Le

∂ψe

∂x

����
vn

= 0. (92)

A bright soliton is placed on a single edge as the initial
condition, and the problem is integrated forward in time using
the SBDF2 timestepper. The soliton translates to the end of the
segment then scatters and disperses into the other segments and
eventually fills the graph. Snapshots of the evolution are shown
in Fig. 10. This example demonstrates the composability of the
Dedalus API and the advantage of working within a high-level
Python environment.

D. Orszag-Tang Vortex

Spectral methods can also correctly solve for high-Mach-
number flows which develop shocks, provided that diffusion
is introduced in the simulation to regularize the shocks. The
Orszag-Tang vortex problem [97] is a standard compressible
magnetohydrodynamics (MHD) test problem in astrophysics
(e.g. for the fixed-grid Godunov code Athena [98, 99], the
finite difference code Flash [100], smoothed-particle hydro-
dynamic codes [101], moving mesh codes [102], etc.). The
problem can be simulated with shock-capturing algorithms
(e.g. Riemann solvers) or those with numerical diffusivity
which can regularize the shocks (e.g. SPH). Here, we explic-
itly add diffusion of momentum, heat, and magnetic fields to
the model to regularize the shocks.
We note that a diffusive shock creates entropy at a rate that is

independent of (but mediated by) the microphysical diffusion.
For example, in Burger’s equation, ∂tu+u∂xu = ∂x(ν∂xu), the
dissipation rate across a shock is

d
dt

∫
u2

2
dx = −

∫
ν |∂xu|2dx ≈ −∆u3

12
. (93)

The leading order dissipation is independent of the viscosity,
and the correction is on the order of the inverse Reynolds
number with logarithmic corrections. Numerical simulations
of shocks should therefore give results that are mostly indepen-
dent of the viscosity, provided the Reynolds number is large
enough. This principle underlies shock-capturing algorithms,
but can also be leveraged in spectral simulations. Because of
the weak dependence on the Reynolds number, diffusivities
much larger than the natural values can be used to regularize
shocks while still respecting important global balances. As
long as the resulting diffusive-shock length scale ∆` ∼ ν/∆u
is resolved, a spectral computationwill be free ofGibbs ringing
and produce accurate results.
We simulate the Orszag-Tang vortex in a 2D domain which

is periodic in both x and y directions, and comprises [0, 1]2. A
vortex with velocity u = (− sin(2πy), sin(2πx)) is initialized in
an ideal gas with constant density and pressure, ρ = 25/(36π)
and p = 5/(12π), and ratio of specific heats γ = 5/3. The
initial magnetic field is specified by a vector potential Az =

B0(cos(4πx)/(4π)+cos(2πy)/(2π)), with B = ∇×A, and B0 =

1/
√

4π. The adiabatic sound speed γp/ρ = 1, so the flow is
supersonic in parts of the domain, which leads to the formation
of MHD shocks. We solve the equations

∂tu + ∇T ′ + T0∇Υ − ν
(
∇2u + (1/3)∇∇·u

)
=

− u·∇u − T ′∇Υ + ν∇Υ·S
+ (B·∇B − (1/2)∇|B|2)e−Υ, (94)
∂tΥ + ∇·u = −u·∇Υ, (95)
∂tT ′ + (γ − 1)T0∇·u − (χ/cv)∇2T ′ =
u·∇T ′ − (γ − 1)T ′∇·u + (χ/cv)∇T ′·∇Υ
+ (ν/2cv)(Tr(S2) + Tr(S)2) + (η/cv)|∇×B|2e−Υ, (96)
∂t Az − η∇2 Az = ez ·(u×B). (97)
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Figure 11. Density at t = 0.5 in the Orszag-Tang vortex test. The
sharp density jumps visualize the MHD shocks. The structures in the
upper left and lower right corners are due to shock-shock interactions,
which are correctly treated in Dedalus.

Here, ν, χ, and η are the viscosity, thermal diffusivity, and
magnetic diffusivity, T0 = 1/γ is the background temperature,
T ′ is the temperature perturbation, and Υ = log ρ. The heat
capacity at constant volume cv = (γ − 1)−1 = 3/2 normalizes
the conduction and heating in the energy equation for T ′. In
the nonlinear viscous terms, the symmetric stress tensor S =
∇u + (∇u)T − (2/3)∇·u I. This is an MHD-analog of the
equations introduced in Lecoanet et al. [18].

We run the simulation at rather high resolution, using 4096
modes in the x and y directions. We use 3/2 dealiasing in
each direction, although this does not eliminate aliasing errors
from converting from Υ to ρ. We set all the diffusivities equal
to 10−4. For timestepping, we use a third-order, four-stage
DIRK/ERKmethod (RK443 ofAscher et al. 92), with an initial
timestep size of 2.5 × 10−5. We use adaptive timestepping
based on the CFL condition associated with both flow and
Alfvén speeds (but not the sound speed), with a safety factor
of 0.6. The simulation is run to t = 1.

Fig. 11 shows the density at t = 0.5. There are very sharp
density gradients due to the formation of shocks. Even more
impressive, Dedalus is able to correctly follow the interaction
between multiple shocks, which produces the features in the
upper left and lower right corners of the figure. These are
similar to what is found in high resolution simulations with
shock-capturing codes [e.g. 99].

To better visualize the shocks, we plot a horizontal profile
of the density at y = 0.3125 in Fig. 12. At this height, there
are shocks at x ≈ 0.3 and ≈ 0.7. The inset shows the solution
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Figure 12. A profile of the density at t = 0.5 and y = 0.3125 in the
Orszag-Tang vortex test. The inset shows the density profile around
x = 0.7, with crosses denoting grid points (using the non-dealiased
grid). The shock is resolved by several grid points.

very close to x = 0.7. The shock is well-resolved by 4–5 grid
points. Note that the density stays smooth despite no diffusion
in the density equation. Rather, it appears that the combination
of viscosity and thermal diffusivity cause the temperature and
pressure to regularize, which in turn regularizes the density
via the ideal gas equation of state, p = ρT .

E. Quasigeostrophic Flow

One of the original motivations behindDedalus was to allow
the straightforward computation of non-standard equation sets.
It is a common practice for modelers to start with something
universal, such as Navier-Stokes, or Maxwell Equations, make
a series of asymptotic reductions, and arrive at a new set of
equations that can capture an interesting physical regime. It
is often not clear how useful these equations are until they
are simulated. But it is risky to write “off-the-shelf” solvers
for new equations before there is good evidence that they are
useful to at least a few people.
The Quasigeostrophic (QG) model is a classic approxima-

tion used in geophysical and astrophysical fluid dynamics. Ini-
tially, the QG model was intended to reduce the overall cost of
simulations. The idea is to filter sub-dominant fast-timescale
waves, while retaining essential nonlinear dynamics. Current
state-of-the art simulations no longer require the QG assump-
tion on the basis of cost. However the equations are still
used widely because of their relative simplicity and explana-
tory power. QG is a non-standard model that became widely
adopted. Since the advent of QG, other strongly nonlinear
reduced models appear in different fields occasionally, but
computational results can lag by several years. For exam-
ple, in stratified fluids [18, 103, 104], in magnetized fluids
[105, 106], in Langmuir turbulence [107, 108], in near-inertial
wave dynamics [109–111], and in rapidly rotating fluids [112–
114] (theory) [93, 115, 116] (simulation).
The solution of the QG equation has a long history starting

with numerical weather prediction in the 1950s [117, 118].
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Under certain restrictive assumptions, the QG problem can
be reduced to 2D equations on the surface [e.g. 119, 120],
or three-dimensional equations in a triply periodic domain
[e.g. 121, 122]. However, the most general case requires a
three-dimensional layer with boundaries [e.g., 123], and non-
constant coefficients. In our current work, we pick QG as
an interesting example problem because it highlights many
features unique to Dedalus. We choose the most difficult and
general case of a finite 3D layer because it illustrates the most
design features within a single model. Like previous work,
it would be straightforward to simplify our example script to
model a triply periodic domain, or a two-dimensional layer, if
one wanted.

The traditional QG equations collapse to a single, second-
order equation for the potential vorticity (PV). This is equiv-
alent to a first-order formulation with two dynamical vari-
ables and two first-order equations. A first-order formula-
tion does not increase the computational cost because the
second-derivative matrix has double the bandwidth of the first-
derivative matrix. Dedalus can use the traditional PV formula-
tion in terms of the streamfunction and its vertical derivative.
Here, we describe an alternative formulation choosing more
physically meaningful variables, which makes the problem
more straightforward to pose and generalize; at no additional
cost.

We solve for two variables: w (upwelling) and p (pressure).
All other physical quantities (e.g. buoyancy and velocity) are
diagnostic in terms of w and p. The upwelling field is not
part of the traditional formulation. Although we solve for two
variables instead of a single variable (PV) in the traditional
formulation, using the vertical velocity makes the boundary
conditions much simpler; we do not need to solve a nonlinear
buoyancy advection equation on the boundary.

We use Dedalus substitutions to define several of the impor-
tant physical variables in terms of the pressure, p,

u = −∂yp (98)
v = ∂xp, (99)
θ = ∂zp, (100)
ζ = ∂xv − ∂yu = (∂2

x + ∂
2
y )p. (101)

Dedalus substitutions can be recursive, e.g., to define ζ . The
substitutions reflect the well-known geostrophic and hydro-
static diagnostic balances inherent in the theory. Pressure
assumes the role of the stream function, ψ. We subsequently
define the advection substitution with an argument,

D(q) ≡ u ∂xq + v ∂yq. (102)

We also use substitutions to prescribe horizontal 4th-order
hyperdiffusion,

L(q) ≡ ∂2
xq + ∂2

yq, ∆4(q) = L4(q). (103)

The problem parameters are the Coriolis variation β, the Ek-
man friction γ, the stratification profile Γ(z), the thermal-wind
profile U(z), and the hyper-diffusivities ν4 and κ4. We solve
the coupled prognostic equations,

∂t ζ +U∂xζ + βv − ∂zw + ν4∆4(ζ) = −D(ζ) (104)
∂tθ +U∂xθ −U ′v + Γw + κ4∆4(θ) = −D(θ) (105)

The traditional formulation solves the entire buoyancy evo-
lution equation on the boundary. This is a complicated way
to impose no vertical flow. Because the upwelling is part of
our formulation, we impose the boundary condition directly.
More precisely, we impose Ekman flux boundary conditions.

w ∓ γ± ζ = 0 at z = 0, 1 (106)

Ekman pumping conditions result from a closure model of an
asymptotically thin viscous boundary layer [124]. We could
easily include boundary stress or topography on the right-hand
side.
The −U ′ shear term in the bulk equation comes from a

large-scale background thermal-wind profile

∂zU = −∂yΘ, (107)

where Θ(y, z) = y S(z) is a linear north-south-varying buoy-
ancy profile. Unstable modes extract energy from this ther-
mal variation. The evolution equations are a coupled pair of
1st-order equations in ∂z for p and w. There is only one inde-
pendent time derivative as ζ and θ are both related to p, as is
PV

PV = ζ + ∂z(Γ−1 θ) =
(
∂2
x + ∂

2
y + ∂zΓ

−1∂z

)
p (108)

Looking at the diagnostic balances, we can see that

∂zζ − (∂2
x + ∂

2
y )θ = 0 (109)

This is the “thermal-wind" balance that follows from geostro-
phy and hydrostatic balance. The vertical velocity field, w,
satisfies its own diagnostic balance at each time step, which
removes non-balanced forcing terms. The vertical velocity
here is exactly analogous to the pressure field for incompress-
ible hydrodynamics; it is a Lagrange multiplier enforcing the
consistent evolution of ζ and θ, which are both related to the
pressure.

Balanced initial conditions — We initialize the pressure
with filtered random noise on the grid; vorticity and buoyancy
follow directly. In practice, this is likely to be sufficient to
initialize the simulation. Some timesteppers may correct for
unbalanced initial conditions. For completeness, we illustrate
how to solve a Linear Boundary-Value Problem (LBVP) for the
upwelling given an initial pressure field.

Knowing p(t = 0, x, y, z), we set up the coupled problem for
w(t = 0, x, y, z):

L($t )−∂zw=−D(ζ)−U∂xζ−βv−ν4∆4(ζ) (110)
∂z$t+Γw=−D(θ)−U∂xθ+U ′v−κ4∆4(θ) (111)

w = ±γ±ζ at z = 0, 1 (112)

We could collapse these to a single system for w. However, we
can mostly reuse the original system if we introduce a slack
variable, $t . The slack variable takes the place of the time
evolution terms in the full system. Solving this LBVP gives
the vertical velocity at t = 0 and $t = ∂tp|t=0. This general
approach can be used to derive balanced initial conditions
for other equations with time-independent constraints, e.g.,
incompressible hydrodynamics.
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Figure 13. Surface and lateral slices of the PV (top) and buoyancy
perturbation θ (bottom) in a 3D quasigeostrophic flow. Both images
are at t = 200 in the statistically saturated state.

The simulation — We non-dimensionalize z with the do-
main depth, H. We non-dimensionalize x, y with the Rossby
radius of deformation at the top of the box, L = N H/ f ,
where N is the characteristic background buoyancy frequency
at z = H, and f is twice the background planetary rota-
tion rate. We solve for the relative nonlinear fluctuations
around a linearly unstable thermal wind profile; U(z) = z,
U ′(z) = 1. We non-dimensionalize time using the back-
ground shear rate. Here we instead use a depth-dependent
non-dimensional stratification parameter, which necessitates a
fully three-dimensional approach.

Γ(z) = e2z−2 (113)

Dedalus expands this profile in a Chebyshev series up to a
cutoff tolerance of 10−8.
The presence of the shear implies a large-scale background

buoyancy gradient. We include a background planetary vortic-
ity gradient (β-effect) with β = 0.1. To saturate the simulation
we use hyper-diffusivities ν4 = κ4 = 10−6, bottom friction
γ− = 0.16, but no top friction. The horizontal domain size is
40 × 20 Rossby radii in the x, y directions respectively. We
use 256 × 128 Fourier modes in the x, y directions, and 32
Chebyshev modes in the z direction, all using 3/2 dealiasing.
The Chebyshev tau method balances energy to exponentially
high accuracy; exact energy conservation could be still be im-
posed, however, by formulating a self-adjoint system with an
alternative orthogonal polynomial basis [60, 125, 126].

The whole configuration is baroclinically unstable. The
motion is a kind of side-ways convective heat transport. For
background, we highly recommend the book “Atmospheric
and Oceanic Fluid Dynamics” by Geoffrey K. Vallis [127].
To summarize the phenomenology: “It is the instability that
gives rise to the large- andmesoscale motion in the atmosphere
and ocean — it produces atmospheric weather systems, for
example — and so is, perhaps, the form of hydrodynamic
instability that most affects the human condition.”

Wecompute the nonlinear evolution until the system reaches
a statistically stationary state, which takes roughly 75 dynam-
ical time units. Fig. 13 shows the PV and vertical vorticity ζ
at t = 200. The solution contains a sea of compact eddies that
form, merge, and breakup over several dynamical times. For
these parameters, the system ismostly two-dimensional. There

are, however, nontrivial variations in the depth-dependence of
PV.

F. Stokes Flow

Many important biophysical and industrial fluid problems
occur in a high-drag (or low Reynolds number) limit (u0`0/ν =
Re � 1) where the momentum equation reduces to Stokes
flow. Here, we present and solve a simple test problem demon-
strating boundary-driven Stokes flow in curvilinear geometry
with time-dependent tracer fields.
We simulate the classic “unmixing” demonstration [e.g.

128], where a Taylor-Couette device with an inner-cylinder
radius, Rin, turns n times and then reverses back to the start.
For low Re, the flow is reversible, and m-many dye tracers
will appear to mix and then unmix. We non-dimensionalize
lengths with the gap width, `0 = Rout − Rin, and velocities
with the maximum inner-cylinder speed, u0. The Peclet num-
ber u0`0/κ = Pe controls the tracer mass diffusion. Taking
Re→ 0,

∇2u = ∇p (114)
∇ · u = 0 (115)

∂tcm + u · ∇cm =
∇2cm

Pe
, m = 1, 2, 3. (116)

The domain is a no-slip two-dimensional cylindrical annulus
with radius 1 ≤ r ≤ 2 and angle 0 ≤ θ < 2π. The diffusive dye
flux Fm = −∇cm/Pe = 0 at the boundaries. The flow vanishes
at the outer wall; u(t, Rout, θ) = 0. The tangential velocity at
the inner wall is a time-dependent regularized square wave

uθ (t, Rin, θ) =
arctan(50 sin(t/nrot))

arctan(50) . (117)

The time-dependent boundary condition uses the
GeneralFunction mechanism described in §VII E. The
initial dye fields are circular Gaussians with widths δ = 1/4
centered at rdye = 3/2, θm = 2πm/3.
Since the domain is a cylindrical annulus, which excludes

the origin, it can be accurately discretized using a direct prod-
uct of Fourier and Chebyshev bases in θ and r , respectively.
For simulating the full disk, non-direct product bases imposing
certain regularity conditions at the origin are necessary [59]
(these will be implemented in future versions of Dedalus).
In polar coordinates, the differential operators ∇, ∇2 contain

non-constant coefficients proportional to 1/r and 1/r2 multi-
plying the radial and azimuthal derivatives, which can simply
be added when entering the equations. Naively (for example)
one might implement the angular part of the Laplacian as 'd(
u,th=2)/r**2' where th is the θ spatial variable. However,
the Chebyshev expansion r−2 converges very slowly, leading
to dense non-constant coefficient matrices. To avoid this, we
multiply all equations by r or r2 (depending on the order of
derivatives). The resulting non-constant coefficient matrices
only contain bandwidth one or two.

We solve this systemwith 512×512modes using the Runga-
Kutta 443 time stepper and a fixed dt = 0.005. The simulation
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Figure 14. Evolution of the tracer fields in a reversible Taylor-Couette Stokes flow. The three separate tracer fields are visualized as red, green,
and blue in a single RGB image. As time progresses, we rotate the inner cylinder first counter clockwise and then clockwise. By the end of the
simulation, the flow has returned to its initial conditions, modified only by mass diffusion of the dye.

runs approximately four rotations forwards and backwards;
nrot = 8. Fig. 14 shows snapshots of the flow at five times,
symmetric about themiddle of the simulation. The dye spreads
out into thin sheets as the inner cylinder rotates in the counter-
clockwise direction; the sheets congregate back, differing from
the original Gaussian blobs due to the action of the dye. The
final shapes are not Gaussian. Shear dispersion leads to thin
structure (sharp gradients) in the radial direction, and hence
the diffusion is not isotropic.

This simulation uses high Pe = 107, causing the sheets
to become very thin. The dye-patches area stays constant in
the absence of diffusion. Equating the initial and final area
A0 ∼ πδ2/4 ≈ Af ∼ nrot2πrdyeδr , implies the sheet width
δr ∼ 1/200. For the diffusion time across the sheets to be
greater than the total simulation time, τD � 2nrot ' 10, we
require Pe & 10/δr2 ∼ 4× 105. The example code also works
with Pe = ∞, disabling the ∇2cm/Pe terms and flux boundary
conditions. In this case, the well-resolved sheets return to the
original Gaussian with only slight time-stepping errors.

G. Atmospheric waves

Stratified (non-rotating, neutral) atmospheres support two
classes of linear waves: acoustic waves and gravity waves.
The properties of these waves are easy to compute in constant
coefficient atmospheres (like isothermal atmospheres), but re-
quire numerical solutions when the atmosphere structure in-
troduces non-constant coefficients. Solving for the nonlinear
atmospheric background structure is challenging. Here we
use a nonlinear boundary value problem (NLBVP) to solve for
an atmosphere profile, and then solve an eigenvalue problem
(EVP) for the wave modes.

We study an optically thin plane-parallel atmosphere cou-
pled to an underlying, optically thick adiabatic layer. This
models the Sun’s photosphere and lower atmosphere, or
Jupiter’s atmosphere spanning the radiative-convective bound-
ary and the lower stratosphere. For the background structure,
we solve hydrostatic and thermal equilibrium, including radia-
tion transport under the Eddington tensor approximation [e.g.,

129–132]:

∂Pg

∂z
+
∂Pr

∂z
= −ρg, (118)

∂Pr

∂z
= − ρκFr

c
, (119)

with Pg the gas pressure, Pr the radiation pressure, ρ the
density, g the constant gravity, κ the opacity, Fr the constant
radiative flux, and c the speed of light. We use an ideal gas
equation of state Pg = ρRT with R the gas constant and T the
temperature, the Eddington tensor closure Pr = f aT4 with a
the radiation constant and f = 1/3, and a Kramer-like opacity
law for κ:

κ(ρ,T) = κ0

(
ρ

ρ0

)a (
T
T0

)b
, (120)

With these substitutions, and non-dimensionalizing by ρ0,
T0, and a lengthscale L, the equations become

1
ρ

∂ρ

∂z
+

1
T
∂T
∂z
= −g

∗

T

[
1 −

(
F

FEdd

)
ρaTb

]
(121)

1
T
∂T
∂z
= −Qρa+1Tb−4, (122)

where g∗ = gL/RT0, FEdd = gc/κ0, and
Q = ρ0κ0Fr L/4 f acT4

0 .
For F � FEdd, the optically thick deep solution will be

nearly polytropic with ρ ∝ Tm where m = (3 − b)/(1 + a).
We fix a = 1, b = 0 and take g∗ = m + 1 to define the
lengthscale L. Q is taken to be 1 − 1.68 × 10−4, correspond-
ing to ln(Teff/T0) = −2 in a gray atmosphere. We solve this
nonlinear boundary value problem in Dedalus using ln ρ and
ln T as dynamical variables with 128 Legendre modes. A
dealiasing factor of 2 is used, which reduces but cannot elimi-
nate aliasing errors since exponential nonlinearities (formally
including infinite polynomial orders) are present in the formu-
lation. Solutions converge to a relative tolerance of 10−8 in
O(10) Newton iterations. When F = 0 there is an analytic so-
lution due to Brandenburg [133] which our numerical solution
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Figure 15. (a) Structure of a balanced atmosphere with an Eddington
closure for radiation transport and a Kramer-like opacity law with
a = 1, b = 0. At depth, the atmosphere is nearly an adiabatic
polytrope with constant s/CP and N2 ≈ 0. The upper atmosphere
is nearly isothermal with exponentially decaying ρ and P. (b) The
upper atmosphere is a resonant cavity for internal gravity waves with
N2 > 0. Frequencies are normalized by the Brunt-Väisälä frequency
N in the isothermal layer.

matches to 10 digits in the L2 norm, verifying the correctness
of the implementation. We proceed here with F/FEdd = 10−5,
for which there is no analytic solution.

We plot the temperature, density, and pressure in Fig. 15.
The bottom, optically thick, part of the atmosphere is nearly
polytropic with ρ ∝ T (3/2), as expected for this choice of a and
b [134]. The top, optically thin, part of the atmosphere is nearly
isothermal while the density and pressure drop exponentially.
This region has a constant Brunt-Väisälä (buoyancy) frequency

N2 = −g∂zs/CP . (123)

Next we consider the oscillation modes of this atmosphere.
The character of waves modes depends on their frequency
relative to ω±, which are defined as

ω2
+ = ω

2
L + ω

2
ac, (124)

ω2
− =

ω2
L

ω2
L + ω

2
ac

N2, (125)

where the Lamb frequency ωL and acoustic frequency ωac are
related to the properties of the background atmosphere [e.g.,
135]. Acoustic waves have frequencies greater than ω+, while
gravity waves have frequencies less than ω−. We plot ω± for
our atmosphere in Fig. 15. High-frequency sound waves can
propagate all the way to the bottom of the atmosphere, whereas
gravity waves mostly stay in the optically thin isothermal layer.

We write the ideal, linearized fully compressible equations

as

∂tw + ∂zT1 + T0∂z ln ρ1 + T1∂z ln ρ0 = 0, (126)
∂tu + ∂xT1 + T0∂x ln ρ1 = 0, (127)

∂t ln ρ1 + w∂z ln ρ0 + (∂xu + ∂zw) = 0, (128)
∂tT1 + w∂zT0 + (γ − 1)T0 (∂xu + ∂zw) = 0, (129)

for the perturbation velocities w and u, and thermal and log
density perturbations T1 and ln ρ1. The non-constant coeffi-
cients of the atmosphere are ∂z ln ρ0, T0 and ∂zT0 and we take
γ = 5/3. For simplicity, we impose impenetrable top and
bottom boundaries (w = 0).
We formulate this as an eigenvalue problem in Dedalus

by replacing ∂t = iω and ∂x = −ikx and solving for com-
plex eigenvalueω given specified horizontal wavenumbers kx .
We use the eigentools12 package to automatically test whether
eigenvalues are numerically converged using the techniques
described in Boyd et al. [78, ch 7.5]. As expected, we find
about 50% of the eigenvalues are converged for sufficiently
high resolution. Here we solve with 256 Legendre modes for
twenty distinct kx , themselves logrithmically spaced. Legen-
dre expansions produce optimal polynomial approximations in
the L2 norm and may be preferable to Chebyshev expansions
in problems where the lack of a fast transform is unimportant,
such as dense eigenvalue problems.
Fig. 16 shows the frequencies (or equivalently periods) of

the wave modes calculated with the Dedalus eigenvalue solver.
Because sound waves have frequencies greater than ω+ and
gravity waves have frequencies less than ω−, we also plot the
minimum ofω− andmaximum ofω+ over the vertical extent of
the atmosphere (both of which occur in the isothermal layer).
This allows us to easily distinguish sound waves from gravity
waves. We also find that, at fixed horizontal wavenumber,
the frequency spacing between sound waves is about constant,
whereas the period spacing between gravity waves is about
constant. This well-known property follows from the disper-
sion relation in the large-vertical-wavenumber limit.
Fig. 17 shows vertical velocity eigenfunctions w, scaled by√
ρ. These modes correspond to the marked modes in Fig. 16.

All eigenfunctions have been normalized by the mode kinetic
energy:

w =
wEVP

W
, W =

√√∫
ρ
(
u2

EVP + w
2
EVP

)
dz∫

ρdz
. (130)

We find that the eigenfunctions follow the intuition of the prop-
agation diagram in Fig. 15. Gravity modes are trapped in the
upper atmosphere, while acoustic modes span a larger region
of the full atmosphere with the highest frequencymodes reach-
ing the bottom of the domain. The effects of the non-constant
coefficients are visible in the acoustic modes which have a
varying vertical wavelength in the deep adiabatic interior and
a nearly constant vertical wavelength in the upper isothermal
region.

12 https://github.com/DedalusProject/eigentools

https://github.com/DedalusProject/eigentools
https://github.com/DedalusProject/eigentools
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Figure 16. Eigenmode (a) frequencies and (b) periods for a radiative
atmosphere. The mode frequencies ω are normalized by the Brunt-
Väisälä frequency N in the isothermal layer. Acoustic modes ("ac",
blue), gravity modes ("gw", red), and f-modes ("f", black) are identi-
fied by their frequencies. Acoustic waves are expected to have nearly
equal frequency spacing, while gravity waves have nearly equal pe-
riod spacing, as is observed. Colored circles highlight modes shown
in Fig. 17.

This example of wave eigenfunctions and eigenvalues
demonstrates the ability to link a complex atmosphere with
detailed solves. This example considered ideal waves in
a bounded atmosphere, but can be easily extended to non-
adiabatic waves with thermal damping, to magnetohydro-
dynamic waves propagating through a background magnetic
field, and to systems with open boundary conditions.

H. Diamagnetic Levitation

This example computes the motion of a levitating rigid body
under the competing influence of gravity and an imposed
diffuse background magnetic field. There are three general
classes of magnetic levitation: (I) AC Electromagnetic sus-
pension of a conductor relying on an alternating background
field; (II) Motion-induced suspension such as Maglev trains
and spinning tops; and (III) diamagnetic levitation, which re-
sults frommagnetically induced eddy currents from a DC field
within special types of macroscopic media. Diamagnetic lev-
itation is usually the weakest form, but superconductivity pro-
vides the important exception. Past experimental work on dia-
magnetic levitation used an approximately 16 Tesla solenoid
to suspend a frog quasi-stably (and mostly safe for the frog)
[136].

For context, magnetic levitation of any kind is actually
a rigid-body version of magnetohydrodynamic buoyancy (or
Parker instability), which arewell-know in astrophysics. [137].
Maglev train physics is very similar to differential-rotation in-
duced magnetic buoyancy; which is important in stellar and
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Figure 17. Vertical velocity eigenfunctions for a radiative atmosphere,
scaled by √ρ, including (a) acoustic modes and (b) gravity modes.
Gravity modes are almost entirely confined to the isothermal portion
of the atmosphere and are evanescent in the adiabatically stratified
deep interior. Acoustic modes propagate in both regions, with high
frequency waves propagating deeper.

planetary interiors [138]. All types of levitation would be
amenable simulation in Dedalus; including magnetohydrody-
namic buoyancy. Here we focus exclusively on solid-body
diamagnetic levitation.
Electrodynamics —We use the (non-relativistic) Maxwell’s

equations for the magnetic flux density, B; electric field, E;
magnetic field, H; and current density, J.

∂tB + ∇ × E = 0 (131)
∇ · B = 0 (132)
∇ × H = J (133)

Closing the system requires a constitutive relation between H
and B, and Ohm’s Law between E and J (in a frame moving
with velocity v),

H =
B
µ
, E = ρ J − v × B (134)

The constitutive parameters are the resistivity ρ (inverse elec-
trical conductivity), the magnetic permeability µ, and the dif-
fusivity η = ρ/µ.
We use a magnetic potential B = ∇ × A to enforce the

magnetic Gauss’s law ∇·B = 0. In two dimensions we can use
a scalar magnetic potential (three dimensions would require a
gauge choice). Then Faraday’s law of induction is

∂t A = vxBy − vyBx + ρ

[
∂y

Bx

µ
− ∂x

By

µ

]
, (135)

where Bx = ∂y A and By = −∂x A.
Eulerian velocity — We embed a freely movable (yet cou-

pled) rigid body within the neutral background. First, the
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rigid-body translation and rotation produce the local Eulerian
“fluid” (continuum) velocity

if (x, y) ∈ M(x0, y0, θ), then
vx(t, x, y) = Ûx0(t) − (y − y0(t)) Ûθ(t) (136)
vy(t, x, y) = Ûy0(t) + (x − x0(t)) Ûθ(t) (137)

The setM(x0, y0, θ) represents the points inside the body with
center of mass x0(t), y0(t) and orientation angle θ(t). The
Eulerian velocity vanishes outside the body.

Mask function — We use a smooth mask function (rather
than strictly binary) to indicate the solid-object region. We
model our solid as an ellipse with 2:1 semi-major/semi-minor
axis ratio. We use an adjustable error function profile for the
mask function

Mε(x, y) = 1
2

{
1 − Erf

[√
π

2ε

(
x2

a2 +
x2

b2 − 1
)]}

. (138)

The smoothed-mask function approach is called the
“smoothed-volume-penalty method” (SPV). Recent detailed
analysis shows this method is quite competitive with all other
techniques for treating moving solid objects. Also, the smooth
transition region aids in controlling error compared to an
abrupt transition [62].

Coupled ODEs — Translation and rotation about the center
of mass follow a set of ordinary differential equations describ-
ing Newton’s laws of conservation of momentum and angular
momentum.

d
dt

[
x0(t)
y0(t)

]
=

[
vx(t)
vy(t)

]
, (139)

d
dt

[
vx(t)
vy(t)

]
=

1
m

[
F̄x(t)
F̄y(t)

]
−

[
0
g

]
, (140)

d
dt

[
θ(t)

I ω(t)

]
=

[
ω(t)
τ̄z(t)

]
(141)

The parameters m and I are the object’s mass and moment of
inertial; g represents gravitational acceleration. For the ellipse
I/m = π a b (a2 + b2)/4. Solving this system of 6 ODEs re-
quires computing the total force, F̄x, F̄y , and torque, τ̄z . Each
depends on the background magnetic field and material prop-
erties of the rigid body.

Lorentz force — We compute the total force on the object
by integrating the Lorentz force density

L = J × B = ∇ ·
[
H B − H ·B

2 I
]
+ H ·B

2 ∇ log µ (142)

The force on the rigid body is

F̄ = −
∫
L dx = −

∫
H · B

2
∇ log µ dx. (143)

The gradient of the permeability makes sense because the ma-
terial is highly localised, yet infinitely differential viaEq. (138).

Magnetic susceptibility — For most everyday substances
(e.g., frogs) the magnetic permeability is extremely close to
that of free space, µ0. Defining

χ =
µ

µ0
− 1. (144)

Figure 18. Evolution of a diamagnetic object levitating in a magnetic
field. The purple ellipse shows the solid-body region. The black
lines show magnetic field lines the same way iron filings trace the
magnetic field from a strong bar magnet. Green dots show the time-
dependent trajectory of the ellipse’s center of mass at equally-spaced
time intervals.

we assume |χ | � 1 (e.g., graphite has χ ≈ −2 × 10−5),

1
µ
≈ 1 − χ Mε

µ0
, ∇ log µ ≈ χ ∇Mε (145)

This simplifies our equations considerably. This assumption
would not be justified for a partial superconductor where χ ≈
−1. In the case of the force and torque

F̄ ≈ −χ
∫ |B |2

2µ0
∇Mε dx, (146)

τ̄ ≈ −χ
∫ |B |2

2µ0
(r − r0) × ∇Mε dx (147)

Considering a negative upward magnetic pressure gradient, it
follows that levitation requires χ < 1. The proportionality of
the force to χ shows the need for very strong magnetic fields.
Simulation — We solve the magnetic induction equation

in non-moving electrically neutral background. Most of the
domain is filled with a harmonic magnetic field to a good
approximation; like the air around us. We non-dimensionalize
the kinematics of the simulation based gravity and the semi-
minor axis of our elliptical rigid body. Therefore g = 1,
a = 2, and b = 1. We choose a mask smoothing parameter
ε = 0.025. We solve the magnetic induction equation under
the above approximations in a rectangular 16 × 8 domain. We
use a Fourier series with 1024 modes for the x direction and
a Chebyshev series with 512 modes for the y direction. In
both directions we use the 3/2 dealiasing rule. We fix the
vertical magnetic field at the bottom of the domain, and allow
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a free vacuum field at the top. We enforce the top boundary
condition via the Hilbert transform in the x direction

A = −B0
k

sin(k x) at y = y0 (148)

Bx −Hx(By) = 0 at y = y1 (149)

The simulation starts with a harmonic field satisfying the
boundary conditions.

We release the solid ellipse from rest with an initial 30-
degree tilt. Fig. 18 shows the ellipse and magnetic field at
three representative times in its evolution. The object free
falls until it encounters a strong enough magnetic pressure
gradient to rebound. Along the way, some of the background
field diffuses into the object. As the object bounces upward,
the captured field resists and eventually halts the rebound. The
process continues until the object is mostly sliding and rotating
along the top of the magnetic arches.

XII. CONCLUSION & OUTLOOK

The integrity and reproducibility of computational science
relies critically on robust, open-source, and well-supported
code. We have introduced Dedalus, a public Python frame-
work for solving PDEs using spectral methods with an inter-
disciplinary community of users and developers.

Dedalus enables users to construct custom domains using
the direct product of spectral series, to symbolically specify
systems of equations and boundary conditions, and to perform
custom data analysis. Dedalus supports initial value, eigen-
value, and linear and nonlinear boundary value problems. The
solution of these problems is automatically parallelized using
MPI, allowing for seamless scaling from individual laptops to
supercomputers with tens-of-thousands of cores. The Dedalus
distribution includes simple example scripts to help users be-
come familiar with the code’s features. In this paper, we have
included a diverse range of example problems demonstrating
more advanced features and the code’s adaptability to many
different physical models.

We are committed to continually enhancing and optimizing
Dedalus and supporting its users. Substantial extensions to the
codebase are currently underway. These include support for
multiple coupled dimensions, coordinate-free equation entry,
enhanced stand-alone data analysis, and non-direct-product
bases for tensorial quantities in curvilinear coordinates (par-
ticularly full disks, spheres, and balls [59–61]). We actively
help users to troubleshoot problems and formulate Dedalus-
compatible models on our public, searchable mailing list. Our
goal for the future is to continue growing through community
development and to provide robust tools for a wide range of
scientific applications.
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Appendix A: Spectral operator matrices

1. Differentiation and conversion matrices

a. Fourier

Fourier differentiation is a separable operator with a matrix
form

∂xφ
F
k (x) = ikφFk (x) =⇒ DF

k,k′ = ikδk,k′, (A1)

where the k in the matrix entry expression is the signed
wavenumber of the corresponding mode.

b. Sine/Cosine

Sine/cosine differentiation is a separable operator which
flips the parity of its operand and has matrix forms

∂xφ
c
k(x) = −kφsk(x) =⇒ DC

k,k′ = −kδk,k′, (A2)

∂xφ
s
k(x) = kφck(x) =⇒ DS

k,k′ = kδk,k′ . (A3)

c. Chebyshev

The derivatives of the Chebyshev polynomials satisfy the
recurrence relation

∂xTn(x)
n

= 2Tn−1(x) +
∂xTn−2(x)

n − 2
. (A4)
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Therefore,

Di, j = 〈Ti |∂xTj〉 (A5)

=
2 j(( j − i)mod 2)

1 + δi,0
[i < j]. (A6)

The derivatives of the Chebyshev-T polynomials are sparse
in the Chebyshev-U polynomials:

∂xTn(x) = nUn−1(x). (A7)

Furthermore, the polynomials satisfy the identity

2Tn(x) = Un(x) −Un−2(x), (A8)

which provides a sparse T-to-U conversion operator for left-
preconditioning Chebyshev differential equations:

PL
i, j = 〈Ui |Tj〉 (A9)

=
δi, j − δi, j−2

2 − δj,0
. (A10)

d. Legendre

The derivatives of the Legendre polynomials satisfy the
recurrence relation

∂xPn(x) = (2n − 1)Pn−1(x) + ∂xPn−2(x). (A11)

Therefore,

Di, j = 〈Pi |∂xPj〉 (A12)
= (2i + 1)(( j − i)mod 2)[i < j]. (A13)

The Legendre polynomials are equal to the Jacobi polyno-
mials Jα,β with α = β = 0. Their derivatives are therefore
sparse in the Jacobi polynomials with α = β = 1:

∂xPn(x) = ∂x J0,0
n (x) =

n + 1
2

J1,1
n−1(x). (A14)

Furthermore, the Jacobi polynomials satisfy the identity

2(2n + 1)J0,0
n (x) = (n + 2)J1,1

n (x) − nJ1,1
n−2(x), (A15)

which provides a sparse conversion operator for left-
preconditioning Legendre differential equations:

PL
i, j = 〈J

1,1
i |Pj〉 (A16)

=
j + 2

2(2 j + 1)δi, j −
j

2(2 j + 1)δi, j−2. (A17)

e. Hermite

The derivatives of Hermite polynomials are naturally sparse
in the Hermite polynomials themselves:

∂xHn(x) = 2nHn−1(x). (A18)

The Hermite polynomial differentiation matrix is therefore
banded and is given by

Di, j = 〈Hi |∂xHj〉 = 2 jδi, j−1. (A19)

The enveloped Hermite functions satisfy

∂xφ
H
n (x) =

√
n
2
φHn−1(x) −

√
n + 1

2
φHn+1(x). (A20)

The differentiation matrix for the enveloped Hermite functions
is therefore also banded and given by

Di, j = 〈φHi |∂xφHj 〉 =
√

j
2
δi, j−1 −

√
j + 1

2
δi, j+1. (A21)

Since these matrices are both banded, no conversion op-
erators / left-preconditioners are necessary for the Hermite
basis.

f. Laguerre

The derivatives of Laguerre polynomials are sparse in the
generalized Laguerre polynomials as

∂xLn(x) = −L(1)
n−1(x), (A22)

where

L(1)n (x) =
n∑
i=0

Li(x). (A23)

The Laguerre polynomial differentiation matrix is therefore

Di, j = 〈Li |∂xLj〉 = −1[i < j]. (A24)

The enveloped Laguerre functions satisfy

∂xφ
L
n (x) = −

1
2
φLn (x) −

n−1∑
i=0

φLi (x). (A25)

The differentiation matrix for enveloped Laguerre functions is
therefore

Di, j = 〈φLi |∂xφLj 〉 = −
1

1 + δi, j
[i ≤ j]. (A26)

Both differentiation matrices are rendered sparse by con-
version from Laguerre polynomials to the first generalized
Laguerre polynomials. This is applied to left-precondition all
Laguerre differential equations and is given by

PL
i, j = 〈L

(1)
i |Lj〉 = δi, j − δi, j−1. (A27)
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2. Dirichlet recombination matrices

a. Chebyshev & Legendre

The Chebyshev and Legendre polynomials satisfy the end-
point conditions Tn(±1) = Pn(±1) = (±1)n. These polynomi-
als recombine to isolate the boundary support to the first two
modes as

DT
n (x) =

{
Tn(x) n = 0, 1
Tn(x) − Tn−2(x) n ≥ 2

. (A28)

and likewise for the Legendre polynomials. These Dirichlet
polynomials therefore satisfy

DT
n (±1) = DP

n (±1) =
{
(±1)n n = 0, 1
0 n ≥ 2

. (A29)

The sparse conversion matrix from the Dirichlet polynomi-
als to the Chebyshev/Legendre polynomials is used as a right-
preconditioner to compress the boundary rows corresponding
to Dirichlet boundary conditions while maintaining sparsity of
the equation matrices. This matrix is given by

PR
i, j = 〈Ti |DT

j 〉 = 〈Pi |DP
j 〉 = δi, j − δi, j−2[ j > 1]. (A30)

b. Laguerre

The Laguerre polynomials satisfy the endpoint condition
Ln(0) = 1. These polynomials recombine to isolate the bound-
ary support to the first mode as

Dn(x) =
{

L0(x) n = 0
Ln(x) − Ln−1(x) n ≥ 1

. (A31)

These Dirichlet polynomials therefore satisfy

Dn(0) =
{

1 n = 0
0 n ≥ 1

. (A32)

The sparse conversion matrix from the Dirichlet poly-
nomials to the Laguerre polynomials is used as a right-
preconditioner to compress the boundary rows corresponding
to Dirichlet boundary conditions while maintaining sparsity of
the equation matrices. This matrix is given by

PR
i, j = 〈Li |Dj〉 = δi, j − δi, j−1[ j ≥ 1]. (A33)

This matrix is used to right-precondition problems using both
the Laguerre polynomials and the enveloped Laguerre func-
tions.

3. NCC multiplication matrices

a. Chebyshev

The Chebyshev polynomials satisfy the multiplicative iden-
tity

Tn(x)Tj(x) =
Tj+n(x) + T| j−n |(x)

2
. (A34)

The single-mode Chebyshev multiplication matrices are there-
fore

〈Ti |TnTj〉 =
δi, j+n + δi, | j−n |

2
. (A35)

b. Legendre

The Legendre polynomials satisfy the three-term recurrence
relation

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), (A36)

which is encoded in the Legendre Jacobi matrix J such that

xPi(x) = Ji, jPj(x). (A37)

Since the Legendre Jacobi matrix encodes the action of
multiplication by x, the Legendre polynomial multiplication
matrices are given by the corresponding Legendre polynomials
of the Jacobi matrix:

〈Pi |PnPj〉 = (Pn(J))i, j ≡ (MP
n )i, j . (A38)

The Legendre polynomial multiplication matrices can there-
fore be constructed by applying the Legendre recurrence rela-
tion to the Legendre Jacobi matrix:

MP
0 = I, (A39)

MP
1 = J, (A40)

(n + 1)MP
n+1 = (2n + 1)JMP

n − nMP
n−1. (A41)

c. Hermite

The Hermite polynomials satisfy the three-term recurrence
relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (A42)

The Hermite polynomial multiplication matrices can there-
fore be constructed by applying this recurrence relation to the
corresponding Hermite Jacobi matrix, as detailed above for
Legendre polynomials.
Matrices for multiplication between Hermite polynomi-

als and enveloped Hermite functions are implemented by
reweighting the Hermite multiplication matrices as

〈φHi |Hnφ
H
j 〉 =

Ni

Nj
〈Hi |HnHj〉. (A43)
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Multiplication between enveloped Hermite functions is not
currently implemented as it is not band-limitedwhen expanded
in the enveloped functions. Including such terms would be
possible by expanding the basis to include different powers of
the Gaussian envelope.

d. Laguerre

The Laguerre polynomials satisfy the three-term recurrence
relation

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (A44)

The Laguerre polynomial multiplication matrices can there-
fore be constructed by applying this recurrence relation to the

corresponding Laguerre Jacobi matrix, as detailed above for
Legendre polynomials.
Matrices for multiplication between Laguerre polynomials

and enveloped Laguerre functions utilizes the same matrices
since

〈φLi |Lnφ
L
j 〉 = 〈Li |LnLj〉. (A45)

Multiplication between enveloped Laguerre functions is not
currently implemented as it is not band-limitedwhen expanded
in the enveloped functions. Including such terms would be
possible by expanding the basis to include different powers of
the exponential envelope, i.e. the generalized Laguerre poly-
nomials.
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